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PREFACE

La Mécanique Appliquée a établi des théories générales pour
résoudre les questions relatives aux solides « hookiens » ef auzx fluides
« newfoniens »

Cependant, dans I'univers, les solides n’obéissent pas exclusive-
ment aux lois de Hooke, ni les fluides, a celles de Newton. On
observe fréquemment des phénoménes irréversibles, des déforma-
tions plastiques, le fluage des solides, efc., qui introduisent de la
complexité dans les problémes courants en mécanique. Plusieurs
de ces phénomenes ont déja été étudiés en Rhéologie, mais jusqu’d
présent, ces études, n’envisageant, presque toujours, que des cas
particuliers, ne donnent pas une théorie générale du sujel.

M. Bernhard Gross, Directeur de la « Divisao de Electricidade
e Medidas Electricas » de U'Instituto Nacional de Tecnologia, de
Rio de Janeiro et membre du « Centro de Estudos de Mecdnica
Aplicada », attaché au méme Institut, présente, dans ce fascicule,

les bases d’une théorie générale des phénoménes linéaires des
corps « viscoélastiques ».

La théorie proposée par M. Gross est fondée sur les travaux de
Volterra et sur le principe de superposition, dont la validité est
inconstestable dans létude des phénoménes de Rhéologie. Elle
est ainsi une théorie phénoménologique. Quoiqu’elle ne s occupe
pas de Uexplication intime du mécanisme viscoélastique, elle ana-
lyse ses conséquences avec justesse. De telles théories ont toujours été
extrémement fécondes au progrés de la science, puisque, en réalité,
elles expriment le résultat de I'observation et par cela méme servent
de base a I'édification de nouvelles théories explicatives.

Nous pouvons rappeler ici que les théories explicatives de la
physique moderne sont toutes appuyées sur des théories phénomé-
nologiques comme, par exemple, la Thermodynamique, I'Electro-
magnétisme, efc.

Nous croyons ainsi que la théorie générale si bien congue et
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élablie par M. Bernhard Gross et exposée dans ce fascicule aura
une grande importance dans U'étude des problémes rhéologiques.

Le « Centro de Estudos de Mecdnica Aplicada », du I. N. T.,
sous la direction du Professeur Edmond Brun, est le siége d’éludes
el de discussions sur des problémes de Rhéologie. Nous espérons
pouvoir bientét en divulguer les résullals de ces travaux par une
aulre publication de celte méme série et apporter ainsi une nouvelle
coniribution a cel important chapitre de la Mécanique Appliquée.

E. L. pa Fonxseca CosTta.

Directeur Général du 1. N. T., Rio de Janeiro.
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FOREWORD

In recent years an enormous amount of literature on visco-
elastic properties of high polymeric solids has been published.
So far as the mathematical background of the theory is concer-
ned, many of these papers cover the same ground. The present
exposition aims at a description of the foundation and structure
of the mathematical framework that is common to all theories
of linear viscoelastic behavior. The theory, at the present stage,
is approaching completion. Further progress is likely to be made
in applications rather than on fundamental principles. This
situation seemed to justify a type of exposition which in a way
may be called “ dogmatic ”. Emphasis is definitely put on the
purely mathematical side, however many intermediate deve-
lopments are not given in detail, so the exposition is that of a
formulary rather than of a textbook.

The author, for many years, has been associated with an
electrical engineering department. He became familiar with Lhe
mathematics of dielectric phenomena and electrical network
theory — the counterparts of viscoelastic effects — a long time
before he had his attention directed to the latter. This will
perhaps excuse his tendency of bringing into the discussion of
viscoelastic theory concepts and methods which originated in
electrical theory.

An explanation seems to be due for the fact that a book like
the present came to be written in the electrical engincering
department of an Institute of Technology. The main task of the
Brazilian National Inslitute of Technology, like Lhat of olher
congenerous institutions, is Lhe study of technical problems
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with the ullimale aim Lo further the industrial development of
tho country. 3ul the Director General of the Institute, Professor
I, .. da lonscca Costa, has always stressed the imporlance of
fundamental research. In spite of budget restrictions and other
difficultics inherent in the structure of most Government De-
purlments, he has been able to create a climate favorable for
the growth of pure science, in the firm belief that any signifi-
canl progress in science ultimately will advance technology too,
directly when its results find immediate technical application,
or indireclly by its formative and cultural value. His unerrant
fnith in scicnce and unyielding support have been an invaluable
oncouragement to the anthor who feels deep gratitude for him.

During the last year science in Brasil has received a great
impulse by the foundation of a National Research Council,
headed by Admiral Alvaro Alberto, with the general program
of [urthering activity in all branches of science. In the prepara-
tion of Lhis monograph the author had already the benefits of
Lhe Council, which put at his disposal a special grant allowing
him lo increase his technical and administrative staff and thus
o [ree himself of part of his technical and administrative duties
nnd Lo devote most of his time to scientific research. The help of
the Council is gratefully acknowledged.

Rio de Janeiro, February, 1952
B. Gross.
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INTRODUCTION

1. Erastic AFTER-EFFECT AND ViScOELASTIC BEHAVIOR

In classical theory the behavior of an isotropic deformable
medium is characterized by a set of constant coefficients. Obser-
vers more than 100 years ago found that most substances failed
to fit into this simple pattern and exhibited a behavior that
depended on the deformation and load history of the sample
under test. In consequence such effects which were not accounted
for by the classical theory were called elastic after-effect. The
study of it occupied a great number of physicists. However for
most of the materials with which their studies were made, the
‘ anelastic ” effects represented a rather small correction and
the bulk of the observed data could still be satisfactorily explai-
ned by the classical concepts. The study of the after-effect for
some time appeared to be a matter of academical rather than
practical interest. The situation changed however with the deve-
lopment of the modern high polymeric and rubberlike materials,
for which the ¢ anelastic ” effects are frequently so pronounced
that they obliterate the ¢ normal ”” behavior. The precise know-
ledge of the mechanical behavior of these substances became of
greatest practical value and its investigation was undertaken
intensively. It was found that these substances exhibit proper-
ties which are found in elastic and in viscous substances. Thus
the term *“ viscoelasticity > was coined.

The situation of the research worker in this field nowadays is
more favorable than was that of the scientists of the last cen-
tury —- not only because he can avail himself of the information
which has piled up during a century of research (an opportunity
of which apparently not everybody seems to be aware), but
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These integrals are known as principle of superposition. In the

Lheory of the elaslic after-cffect they were formulated, as purely
empirical laws, by Boltzmann (11). Their deduction is given in
delail by 11. Leaderman (9) who also made a series of superpo-
silion Lesls. But the validity of a principle of superposition is
nol. confined to the theory of the elastic after-effect. It also
appears in the theory of dielectrics where it has been formulated
by Ilopkinson (12), and in the theory of electrical networks
where il was used extensively by Carson (13). But long before
their use in physics, these integrals have made their appearance
in pure mathematics where they became known as
inlegral (14),

This widespread application shows that such integrals do not
express a particular aspect of one effect, but a general property
conmmmon to a wide class of phenomena. A study of the mathe-
matical implications shows that they apply to all phenomena
which arc associated with linear total or partial differential
equations with constant coefficients. Thus they are characte-
ristic for all linear systems the structure of which is time-in-
dependent. This excludes effects like aging, workhardening and
olhers in which the system undergoes modifications with time.

The two equations (10) represent a pair of integral equations.
In (10 @) one may consider given the stiess o, then it is an inte-
#ral for strain in terms of stress. Conversely one may consider
given the strain e, then it is an integral eq. for the stress. The
theory of such integral eqs. was developed by V. Volterra (15),
who has shown that the inversion of eq. (10 a) is given by
e (10 b) and conversely, and who has derived the general rela-
Lion which must exist between the expression in brackets under
theintegral. Therefore the two €gs. are not-independent from each

other. In principle it would be sufficient to write down one of
them ; Lhe

Duhamel’s

other then follows as a necessary consequence. The
mulhor does not employ this way of writing. Then the ; depen-
dence hetween the 2 eqs. will yield conditions of compatibility
between the cocllicients and functions which appear in (10).

TaprLe I. — Definition of Functions and Symbols

Group II — strain z given

Group I -— stress ¢ given

T

-
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7. — TaBLE or Funcrions

The present paper usually employes a familiar terminology,
except perhaps in that « plastic strain » (as opposed to elastic
slrain) is used as a convenient notation for what other authors
have called Newtonian, viscous, or linear, flow. The subject of
nomenclature is however too controversial to be discussed here.

'I'able I gives the functions and coefficients mentioned in the
foregoing discussion. It includes also the distribution functions
Lo be discussed in the next chapter. '

R (o e

II1

THE RELAXATION FUNCTION
AS A LAPLACE INTEGRAL

. The relaxation function is a continuous, decreasing function
which for { —o0 goes to 0.Thus it can be represented in integral
form as

(11 a) E(t) = [ E F.(*r) e dr
0
The normalization factor B is determined in such a way that
(12 a) f F(’r) dr = 1’
0
that is
(12 b) B = %0).

F(z) dr is the relaxation spectrum. This may be a continuous
or a line spectrum. In the last case it is written

3) Fr) = 2R3 — )
and eq. (11 a) degenerates into
(11 b) W) = DA e

= being the characteristic relaxation times.
Introducing a relaxation frequency s = 1/, and a frequency
function N(s)ds,

14 N(s) = 8 F (1/s)/s? s = 1/v
eq. (11 a) is transformed into

(15) o) = j " N(s) et ds.
0

v e i ¢ el AL 0 1S
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For a line spectrum one has N(s) = X BA; s(s— s;) and the inte-
gral (15) transforms into ¢(f) = 2 BAiexp (—=5 f).

In this deduction the existence of the distribution function
F(s) appears merely as a result of the mathematica] properties
of the relaxation function and not of any assumptions about a
molecular mechanism. Conversely the possibility of finding a
function that actually fits into eq. (11) cannot be considered
as proof for such a mechanism.

Inspection of the integral (15) shows that this is a Laplace
integral. Indeed the reason for the substitution (14) was to
transform eq. (11) into this form. Therefore, when v (@) is
given as an analytical expression, standard methods for the
inversion of the Laplace integral can be applied as was pointed
out by Gross (16). The technique of using known Laplace pairs
for the analysis of the relaxation spectrum was discussed in
length by H. H. Macey (17). Such methods are found in nume-
rous textbooks of which here reference is made to Van der Pol
and Bremmer (18).

The integral inversion formulae do not lend themselves
casily to numerical computation. Thus the solution becomes
difficult, when it seems impossible to find an analytical expres-
sion which fits sufficiently well the data and at the same time
allows for an inversion of the Laplace transform in analytical
form. However a method of computation has been developed
by C. Eckart (19), in which the experimental data are represen-
ted by a polynomial of a simple function of ¢ By this power
expansion method the distribution function can be calculated
Lo any degree of appréximation, provided §(f) is given over a
sufliciently wide interval of ¢ Eckart himself has applied this
method successfully to the formally identical problem of the
nnalysis of the absorption curve of cosmic radiation. Another
expansion method was given by Macey (17).

Iv

APPROXIMATION METHODS
FOR THE DETERMINATION OF THE RELAXATION
SPECTRUM

The relaxation function, according to eq. (11) is expressed
in terms of the relaxation spectrum as an integral transform,
with the range of integration extending from 0 to «o. The value
of Y(f) at a given point £, therefore depends on all the values of
the distribution in the interval 0 — oo . Thus it cannot in general
be expressed in terms of the value of the relaxation spectruTn
at one point. Conversely, the rigorous inversion »me!:hOfis \iv111
not in general allow to express the value of the distribution
function at one given point as a function of the relaxation func-
tion at some other single point, but will give a functional expres-
sion in which appear all values of the relaxation function in the
interval 0 — oo . Therefore, the spectrum can be determined rigo-
rously if, and only if the relaxation function is known over the
entire time scale. Of course not all values contribute to the same
extent. The  weighing * factor exp (— fs) reduces gle influence
of the far-off end of the spectrum upon a given ¥(#). For the
application of the analytical methods the relax?tion functi.on
must therefore be given in the form of an analytical expression
in the interval 0 — o0 . . '

Experiment, however, does not provide one w1th- analytical
expressions, but with a set of experiment data, plots 111' a graph,
which of course extend over a limited interval of time only.
One has therefore to find a suitable formula which fits those
data sufficiently well and is also amenable to further treat'm.ent.
Apart from the possible difficulty to find such an expression,
this melhod necessarily implies in an cxLrapolation of the expa-
rimental data into o region ‘where the behavior of the under-
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lying function is unknown. However, since theoretically all
values of this function contribute to the spectrum, the result
of the analysis will depend to some extent on the form of the
extrapolation. In certain instances some uncertainty will there-
fore result in the determination of the spectrum.

For these reasons many tentatives were made to obtain an
inversion method which would give the relaxation spectrum
by the application of some numerical or graphical operation
on Lhe experimental data. This would imply in the establish-
ment of a direct one-to-one relationship between one point of
the relaxation function and one point of the relaxation spec-
trum, Since this was shown to be impossible, one can only hope
lo get an approximation method. The error depends on the
form of the (true)relaxation spectrum and can hardly be estima-
Led properly. The methods are more reliable when the spectrum
is broad and resembling 'a power law than when it is sharp.
Thus when applying these methods one should always keep in
mind that they will give a general idea of the shape of the spec-
trum, but that the result should be confirmed by independent
theoretical or experimental methods, if it is to be used for fur-
ther treatment or discussion.

Approximation methods were given by Alfrey and Doty (9),
Ter Haar (20), C. Zener (9), and F. Schwarzl (21) to whom the
most comprehensive treatment is due. So far as these methods
apply to the inversion of the integral (15) the exponential func-
tion is substituted by some suitable expression which permits
inversion by differentiation. Alfrey’s method is obtained by
subslitution of exp(—fs) by a rectangle of the same area, Ter
taar's method by substituting for s exp(— #s) a delta function
8(s — 1/H/t%. A further and possibly better approximation is
oblained when exp(— Is) is substituted by the first term of its
serics expansion and the integral taken froms = 0 to s = 1/t
Tuble II summarizes these methods and also shows the results
when they are applied

a) to §(f) = exp (— uf)
b) to §(f) = At~

Reli.
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Taper 11, .— Approximation Methods

Author Fypo of Approximalion
Ter Haar se—ts = 3(s — 1/t) [t
1 s <1t
Alfrey e=ts = s ; 1t
1 —ts s 1ft
Uross e—ts = S( 0 P 1t

Inversion
Formula

B F(o)

Ye)fe
—§'()

Method applied to

Rigorous Solution

TR

et AT
| e—blT Ar—(1+n)
pe T nA t—{1+n)
pitewT n(n + 1) Ar—{t+n)
B(r — 1) Ac—{1+0)/(n)
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RELATIONS BETWEEN COMPLEX
MODULUS FUNCTION,
RELAXATION FUNCTION, AND RELAXATION
SPECTRUM

Hz]ivmg deﬁnfad the distribution function of relaxation times
lV\'/L shall n(?w discuss the relations existing between the quanti-
ies belonging to group II. This is possible with the aid of form

(10 b) of the principle of su iti
. . perposition, convenient i
calions in which the strain is given, o for all appli

1. — CompPLEX MobpULUS FUNCTION
AND ReraxarioNn FunNcTiON

I'he complex modulus function was defined as the st
developed under a sinusoidally varying strain, applied "Sfress
very long time so that the transient has disa;;peaI\)rI;d T‘ l(lr ]
« == exp(inf) and substituting into (10 b) one gets e

(16)  E*(io) = io f " emior ) de 4 E,

0

or separating into real and imaginary component

(17 a) Ee) =o [ 36 sin os ds
0

(17b) E._)l(m) = / —\];(‘r) Cos ot dr
3

wh - (14 ) 1V
" ore It | (]:40 + E;) + iE,. Mathematically these integrals
re one-slded Fourier transforms. They enable one to calculate

. B A A
b ) A -
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the complex modulus function or the real or imaginary compo-
nent of it from the relaxation function. The integrals (17) are
easily inverted and give then expressions for the relaxation
function in terms of the dynamic modulus or the dynamic fric-
tion. Applying the Fourier inversion one has

° o

g =2 [ s do
:

iy FO=> | 2 eosetdo
0

These expressions allow calculation of the relaxation function,
that is, of the behavior under static strain, from dynamical
data.

9. — RELATIONS BETWEEN DyNnamic MoODULUS
AND Dynamic VISCOSITY

The simultaneous existence of the two equs. (18) implies in a
relationship between E; and E, ; otherwise it would be impos-
sible that two different integrals yield the same expression for
I(f). This relation has a physically more interesting aspect if for
E,(o)/o one substitutes n(w). Then it shows the connection
between the dynamic modulus and the dynamic viscosity. It can
be obtained by substituting ¢(f) from eq. (18 b) into eq. (17 a).
The result is

2 = o}
(19 a) E,(0) = = / ()
0

[5} 2

do

0)2——- (ZZ

(19 b) n(w)=2:; / () <5

o2 — o?
0

The integrals are principal values. They can frequently be eva-
luated by analytical methods. But they are also amenable to
numerical or graphical computation. Thus it is not necessary
that the dynamical data be given in analytical form and repre-
sented by mathematical expressions. It is sufficient when they
are given graphically. The weighing factor 1/w? gives an auto-
matic cut-off at the high frequency end.
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a Dynamic modulus Eo+E, (o)

Frequency —

b Dynamic friction Ej (o)

Frequency —

‘¢ Dynamic viscosity 7 (w)

Frequenc —

Fig. 5. — Components of complex modulus
function and dynamic viscosity.

An important relation that follows from (19 b) ié

(19¢) 1,)(())___vz_ [w Elg") de

o

0
Mathematically these integrals are known as Hilbert trans-
forms. They are ciosely connected with the theory of Fourier inte-
grals and of analytical functions. A detailed discussion is given
by Titchmarsh (22) and by Gross (23), Gama (24) and Levi (25)
In physics they now have become a matter of great importance.

In consequence of many applications in electrical network
theory and have been studied by Bode (26), but were already

o
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discussod in conneclion with oplical dispersion by Kronig 27)
and Kramors (28), and in connection with dielectrics by Gross (29)
and Silva and Gross (30), who have made practical applications
and shown how the integrals are computed graphically. The
presenl exposition follows the same lines as that of Gross (29)
for dielectrics. The literature has already become too extensive
for a complete bibliography of all important papers on the sub-
ject to be given here.

9. — ComMPLEX MODULUS FuncrioN IN TERMS
oF RELAXATION SPECTRUM

The integral (16) is an one-sided complex Fourler transform
equivalent to a Laplace transform. Since ¥(f) was given as a
Laplace transform, E*(iw) is essentially an iterated Laplace or
Stieltjes transform. Carrying out the iteration process one gets

(20) E*(io) = io f ) fﬁm ds + Eq

0

and separating into real and imaginary part (fig. 5)

21 a) E,(0) = f N(s) (:2—‘::;;(13
0

@b - Eo) = f "N ;;_‘S_—S—st

0

These expressions give dynamic modulus and dynamic friction
in terms of the frequency spectrum N, or the relaxation spec-
trum F when use is made of eq. (14).

For a line spectrum one has

(22 a) N(s) =X8Ai 8(s— $i)-

Making use of the known properties of the delta function the
integral (20) transforms into :
2

ok /4 Ol 7R « 2N
@21) E*(io)=3 |7 o

S

o +§

?]+Eo

Usually one starts with such an expression and then obtains
the integrals (20) as a generalization. We prefer to give first the

e
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gcnc.ra] formulae and to derive from them the relations for dis-
continuous spectra.

4, — RELAXATION SPECTRUM FROM DvyNamicaL Data

These integral transforms have been known for a long time.
The problem one is faced with now is their inversion. In a way
this corresponds to the inversion of the Laplace tranform (15)
and what was said before about different types of methods in
part applies here too.

Approximation methods were developed (31) and in some
cases successfully applied (32). They are essentially equivalent
to Alfrey’s Laplace inversion method and consist in substi-
Luling the expression o?/(0® 4+ s% by 1 for s < 1/o and O
f(.)r s > ljo. The equs. (21) can then be inverted by differen-
Liation.

A vrigorous inversion method was however given by Fuoss
and Kirkwood (4) and discussed by Weinberg and Househol-
der (33) and by Gross (34). It is very much simpler and more
dircct than are the inversion methods for the Laplace integral.
Ifor this reason the relative importance of rigorous and approxi-
male methods is now different from what it was in the former
(:asc.. The availability of a simple rigorous method makes ap-
proximation dispensable. These formulae are :

_ 1
(23) N(o) = £ — Im E*(wetir)
T
and

(24 a) N@w) = + In E,(weinf?)
w

2
T
(24 b) N 2 '
| @ = — Re Eyoetin)
They invert, respectively, equ. (20), (21 a), (21 b). The meaning
of the symbols ¢ Re ”” and “ Im ” is ** Real part ”’ and ** Ima-
ginary part”. |
lﬂ.(.]. (23) is of importance for analytical purposes. Eqs. (24)
are important for both analytical and practical applications. For
the discussion of experimental dynamical data one has again to
ropresent the experimental curves by mathematical expressions.

DA .
OF THY THEORIEN OF VINGOKLARTIQITY Bl

Bul while In the former cuse Lhis was only Lhe first step in a
complicaled malhemalical process (excepl of course when the
choosen function was identical with a component of a known
Laplace pair), now it gives already the solution of the problem.
Indeed, the distribution functions now follow by a trivial mathe-
matical operation, the substitution of the variable i» by © exp
(% iw), or © by o exp (& in/2), calculation of the resulting com-
plex expression and separation into real and imaginary part.
This needs some practice in complex algebra, but no knowledge
of higher mathematics. In the interpretation of dielectric mea-
surements the method has become commonplace. Examples for
its application have been given profusely. For this reason it is
believed that its application to the discussion of the dynamical
behavior of viscoelastics would be of no less importance.

When measurements have been made of both E; and E,
N may be determined from either of them, or from both these
quantities. Following the receipt given above, in the lastnamed
case one will represent both E; and E, by suitable expressions
and derive from them N. The resulting formulae for N usually
will be different but when represented graphically should give
functions of the same shape. This will constitute a test for the
theory. Alternatively one may choose an expression for say E,,
calculate E, with the aid of eq. (19 b) and see how far the
resulting curve fits the measurements.

In conclusion it results that the determination of the relaxa-
tion spectrum from dynamical data is much simpler than from
static data.

5. — MATHEMATICAL PROPERTIES [OF THE INVERSION FFORMULA

In view of the somewhat unusual form of the egs. (23)
and (24) here a simple way for deducing them shall be given.
Starting with equ. (20) one makes the substitution :

(25) 6 —io e lo-—>—o I

Then

. ne — ic ’ \
(26) E*(—o 4-ig)=(—o Iie) J N(s) “&{—:‘5{‘_—;—;‘2 + (S——:!)E:I:ta ds+L,

\]
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Now consider this expression for lim ¢ — 0. Then one has

(27) lim (—o + i)=wetits  lim E*(— otic) =E*(wexin).
e—»0 e—>0

And
‘ = Nis)
284) lim N2 s = ]
(28 a) O s ® — s,
"
where the integral is a principal value.
@85  lm Lt ys—a),

e>0 T (S — 0)? 4 €2

where () is Dirac’s Delta function (cf. Van der Pol and
Bremmer, ref. 18). Therefore
28 ¢ li N(s) ——————— ds = N{
28 ¢) EEI:O (s) G & ds=rnN(o),
0

. ( co) € -
@8d) Tim *g‘ N(s) ot ds =0

because according to known properties of the Delta function

@8¢) lim L. o)

e—0 T m: (s—0)d(s—o)=

'The remaining term is to be multiplied by ¢ and disappears
for lim ¢ — 0. Therefore, finally,

(')9) E*(m ei'l'rr) — f N(S) dS + irw N(b)) -+ EO

and

(30) N@) = + 1 Im E*uetin,
T

It must be emphasized that E*(we+ i) is actually a symbolic

way for writing lim E*(— o % i¢). Usually, there is no need to
e=0
bother about this. For applications it will be sufficient to subs-

Litute in the formula for E¥, the variable i by o exp (£ im).
A complex expression will result which has a real and an ima-
ginary part. However it may happen that one of these compo-
nonts disappears, When this is the imaginary component, appli-
catlon of the forinula would give zero. For this to occur, the

b AT . 2
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expreasion for 1*(iw) would have Lo be rational. In such a case
onc has indeed to take Lhe rigorous way and calculate the limit
precisely. One will then always {ind a line in the relaxation
speclrum.

The eqs. (21) can be reduced to the form (20) by a substitu-
tion of variables. They therefore are inverted in the same way.

The method which has been given here is not the only, and
certainly not the most general method of inversion. It was
already mentioned that the egs. (20) and (21) are Stieltjes
transforms. These integrals resemble Cauchy’s integral. They
can be transformed into a generalized form of Cauchy’s integral
by a substitution of variables. The inversion is then possible by
a generalization of Cauchy’s formula, N(») being considered as
the residue of the function E* at the point — © (39).

The application of the method to the inversion of the Laplace
integral, and therefore to the determination of the relaxa-
tion spectrum from the relaxation function, was discussed by
Gross (36).

The inversion formulae of course involve the principle of
analytical continuation. Experiment gives values of a function
along the positive real axis. Representing these values as a
branch of an analytical function, one then obtains values of
this function on the whole complex plane. The one-to-one rela-
tionship between one point of the relaxation spectrum and one
point of the complex modulus function therefore represents no
contradiction to previous remarks about the impossibility
of obtaining such relations in the inversion of infinite integrals,
because the point of the modulus function is not an experimen-
tal point, not being situated along the real axis.

The interesting properties of these formulae would invite 2
more complete and more rigorous discussion ; however, this has
to be given elsewhere.

D
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dogenerate into a series of deltafunctions. This will be shown
presently.

Suppose that according to eq. (33)

(1) F(z) = § A; 3(v — ).

Substitution into (49 a) gives

(52) BTF(x) = _1“2 78 N A 8(t— )
T T [K(T)] 2 + [TEBZ Ai 3(‘: ‘—Ti)] 3

I'his is an expression involving deltafunctions, of a novel type

Lhat was recently discussed by G
: v y Gross and Pelzer (38) and Gross
(39). Eq. (52) has the form )

1 €

© [K@]? + &

IE is knowmn that for lim ¢ — 0, this expression is equal to
Y = — w)/|[K'(=)|, where the = are the roots of the eq.
!((T) = 0. It has been shown by Gross (39) that the same result
i3 obtained when ¢ is substituted by 8(+ — v;), provided the

1‘('>()ls of K(v) = 0 do not coincide with one of the . Eq. (52)
gives therefore

(53) T‘T(T) = g PT, 8(‘: —«Tr:),
1

where the amplitudes are given by

1

G1a) BA = ——nr,
2 [K' (=)

the lime constants +; are the roots of the equation
(b1 b) K(z) =0,

and K(x) is given by

®4¢) K(x) == 8o/t — 1/mg + B%Ai/(r — ).
1

BT wETE
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Conversely, if T(x) is given by expression (53), F(s) is given by
eq. (b1) ; the amplitudes are

(55 a) ﬁAi=m’

the time constants r; are the roots of the eq.
(55 b) K(x) = 0
and K(r) is given by
M
(55 c) K(T) = [Ey — BZ A; Ti/(‘r — Ti)]/‘r
1
The meaning of K'(;) is
K @) = [ - Ke |

The expressions for K and K are easily obtained when eqs. (1)
and (53) are substituted into the integrals in (50). Both K
and K are now polynomials in =. When no component of plastic
strain exists, 1/7, = 0 and Eq = 0 ; then the polynomial K is of
order M and the polynomial K of order M. When a component
of plastic strain exists, 1/5, 7 0 and E, = 0 ; then Kis of order
M -+ 1 and K of order M— 1. It follows that

— (M 4+ 1 with plastic strain
6) M= .
(56) M without plastic strain.

The general conclusions are :

a) When one of the spectra is a line spectrum, the other is a
line spectrum too.

b) When a component of plastic strain exists, the number of
lines in the relaxation spectrum always exceeds by 1 the number

~ of lines in the retardation spectrum. When no plastic compo-

nent exists, the number of lines in both spectra is the same.

c¢) The general relations between the amplitudes and time
constants for an arbitrary number of lines is given by egs. GLY)
and (55).

For the simple exponential functions the rclations between
the spectra, or Lhe equivalent ones hetween the creep and the
relaxation funclions, could have been obtained by application of
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the more orthodox methods of Whittacker (40) now found in
many textbooks. For dielectrics, such methods were used by
Grafli (41) and Gross (42). But it seemed more interesting to
give a deduction based on the general eqs. (49) which shows
Lhat these are indeed of a very general type and allow one to
synthesize in a single expression the relation between the dis-
tribution functions for both continuous and discontinuous
specelra.

3. — MIXED SPECTRA

A still more general case would be that F or F is given by a
superposition of a continuous and a line spectrum, that is by an
expression of the form

(57) Fr) = X Ais (v — =) + f(5),
where f(r) is a continuous spectrum. It can be shown that
under such conditions F(z) is given by a similar expression

which can be calculated without much difficulty. However this

shall not be given here, because so far no practical application has
been found. o

4. — CONCLUDING REMARKS

It was shown that all viscoelastic functions can be represen-
led as integrals over one or the other of the two distribution
funclions. The establishment of the direct relations between those
Lwo functions is therefore of fundamental importance. The
nalidify of these relations is general, they apply to continuous,
discontinuous, and mixed spectra, that is to creep and relaxa-
Lion [unctions which ate integrals or series over exponential
lunclions, or both. Computation is possible by analytical, gra-
phical, or numerical methods. Applications include a) discussion
of the difference in shape of typical relaxation and retardation
spectra b) influence of plastic strain on the form of the relaxa-
tion spectrum c) transformations between corresponding mo-
dels d) determination of the creep function belonging to a given
relaxalion spectrum, or the relaxation function belonging to a
#iven retardation spectrum. An an example, it is possible to
caleulate the relardation spectrum and the creep function of a

substance the relaxation spectrum of which is given by a Wie-
cherl distribution,

R Bl
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IX

THE VOLTERRA INTEGRAL EQUATION BETWEEN
THE CREEP FUNCTION
AND THE RELAXATION FUNCTION

There remains now only the task of giving a relation between
the creep and the relaxation function. It is howe.ver found that
no direct relation exists, but that both fun‘ctlons are corre-
lated by an integral equation which is not easily solve.d k'>y ele;
mentary methods. The eq. is closely relateffl to the prl’nmple 0
superposition ; it plays an important role in Volterra’s t'heory
of * anelastic ’ effects and viscoelastic phenomena. So it can
hardly be omitted here. It can be obtained.e‘ither from eq. (4'5),
or directly from the principle of superI'Josmon by substitution
of (10 b) into (10 @). The ultimate result is

68 Ege, — 1+ e ¢ +Eollfn+ 4:;1‘)11(—# )
. b (f—~ S
+f $(v) [1/% =+ _c—i(t—————:)—] de =0
0

It is possible, though sometimes cumbersome, to solve tlius
equation with Volterra’s method of iterated kernels (15). or
the case of no plastic strain, the Volterra integral equat1.0n bet-
ween the rate of creep and the rate of relaxatlon_ was gn.ren by
Gross (ref. 7, 1946) and later by Sips (43) (111. a slightly dlﬁ"farent
form which however is easily seen to be equivalent). For. dielec-
trics, a solution by the original Volterra method W?s given by
'F. M. de Oliveira Castro (44). Important applications of the
superposition theory were recently given Eby. Henderson glf)’)
wlo calculated the relaxation function belonglng to Andrade’s
creep function. Comparison between the theoretical and expe-
rimental results gave so satisfactory an agreemen? that accor-
ding 1o Henderson * the empirical stress relaxation formulae,
which often involve several constants, and are never completcely
satlsfaclory, muy be dispensed with ”.
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GENERAL STRUCTURE OF THE THEORY

One is now in a position to give a picture of the general struc-
Lurc of the theory.

Visco-elastic effects and functions are classified in 2 groups,
group I referring to creep effects and measurements made under

given stress, and group II referring to relaxation effects and
measurements made under given strain.

Inside each group one distinguishes 3 levels :

a) The top level, with the complex compliance function in
group I and the complex modulus function in group II.

b) The medium level with the creep function in group I and
Lhe relaxation function in group IL.

¢) The bottom level, with the retardation spectrum in group I
nnd Lhe relaxation spectrum in group II.

To go Irom one level to that immediately above, one has to
apply a Laplace transform (the one-sided complex Fourier
Lransform being equivalent to a Laplace transform). To go from
one level to that immediately below one has to apply an inverse
Laplace or Fourier transform. It is however possible to reach
from the bottom level directly the top level by means of a
Stieltjes transform. Conversely, one may descend from the top
level Lo the bottom level directly by means of an algebraic (com-
plex) relation.

Befween the two groups there are several relations which allow
one Lo shift from one group to the other. These relations connect
functions lying on the same level. According to the existence of
3 different levels, there aite 3 types of functional relationships.

a) On the top level, a complex algebraic relation connects
the complex modulus and the complex compliance function.

b) On the medium level, a Vollerra integral equation connects
Lhe croep and the relaxation function.

R e R
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¢) On the boltom level, 1 reversible integral transform con-

neets the retardation and Lhe relaxation speetrum.
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the form (B1) and (53). Bul as was shown these can always be
duplicated by a Voigl or a Maxwell model, which therefore re-
presenl Lhe general case.

C bt . . .‘4&-—-——-——)~ . . . . . .
D'F“t”:uzo:ﬁm?'on Polynomial for determination Zsztm]butl:.nFutr!ctlon
of retardationtimes of time constants relaxation times

of strain. Evoliont - of stress.

(¢ime constantsT Xplcit expression (time constants T
, for determination of amplitudes . T
and smplitudesA) -— andamplitudesA)

g 2

e e

0 B

: E

L )

(1] e

. ©

&) |9

O o)

o (3]

<< =

<t
Voigt model. Maxwell model.
(Elsstic moduli Bz (Elastic moduliE;

and and
viscosity viscosity
coefficients 1)  coefficients My
[1a. 12. — Diagram showing relation between equivalent models.
7. — RELATIONS BETWEEN SIMPLE VOIGT

AND MAXWELL MODELS

Ay a simple example a Voigt and a Maxwell model both cons-
Lituted by a single spring and a branch shall be treated. Consi-
dering given the coefficients ¢, E; and %, of the Voigt model,
one wants Lo determine the coefficients E,, E, and »; of the
Maxwell model. Both the retardation and the relaxation spee-
trum are given by single lines, of amplitudes g A; and BA,, and
lime conslanls =, and . The relations between these ampli-
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tudes and time constants shall be calculated first. The function
K(%) of equ. (54) is given by

(86) K(7) = enf7 + BAY/(F—m).
The condition K(x) = 0 gives
(87) :; = My /(Eoo + B‘AI)'

Differentiating eq. (86) gives
. . .
(88) K'(x) = — l_ £, (7 w)? + BAIT

FT G

Substituting ~; from eq. (87) into the last eq. and applying
eq. (54 a) gives for the amplitude A,

—e 1 e Ay

89) BA, = AT
With the aid of eqs. (85) one obtains finally the relations bet-
ween the constants of the models in the form

1 1 - 1

e 11 E -, mE M AT E, )

co

(90) El =

The constant E, is obtained from table III as
1
e, + 1,/E1

In a case as simple as that the relations of course could have
been obtained in a more direct way. But the point to be made is.
that the theory provides for a general formula which gives the
relations between the constants of equivalent models for any
number of branches and which has been brought into a form
which allows for numerical applications. With increasing num-
ber of branches the degree of the polynomial K(r) = o increases
and accordingly increases the difficulty of determination of its
roots. However if necessary numerical methods of computation
can be applied. The problem of shifting from one model to the
other has therefore found a general solution.

THRONIKS OF VIRGOKLAWFIGITY h
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XIII

TABLE OF DISTRIBUTION FUNCTIONS

The following table lists a number of expressions which have
been used in the discussion of viscoelastic and dielectric beha-
vior. 1t docs not aim to be complete. It includes some formulae
which were not found in the literature but derived from given
creep functions or which represent obvious generalizations of
known cxpressions. The orde} is not chronological, but follows
rather the type of function indicated. Most functions are not
normalized.

Dicleclric relaxation spectra correspond to viscoelastic retar-
dulion functions. This is a consequence of the viscoelastic-die-
lectric analogy, which makes current correspond to rate of strain
and voltage to stress.

Table V. — Distribution functions

b
(1) —= e bulgy
- «

u = log, (v/r,)

Viscoelastic relaxation spectrum of Wiechert (1). Tables for corres-
ponding rate of relaxation given by Jahnke-Emde (46). Methods for
derlving cocfficients from dynamical data given by Yager (53).

(2) B e—rol7) dofr

Viscoclastic retardation spectrum derived from creep data of Benne-
witz (54) and Lyons (55).

(3) B e~ (lstaalt) goye

Viscoolastic rolaxation spoctrum derived by Macey (17) with method
of Laplaco palrs,

el
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(4) B (v m ey drfx

Viscoelastic relaxation spectruni derived by Gross (56) from relaxation
data of Andrews ef al. (57). Gross (56) gives also the corresponding relar-
dation spectrum.

B e (71/'5"“71/"52)
(5) 12 [ el 17
0 T, < T < 0

dr O<t <1y

Dielectric relaxation spectrum derived by Kuhn (58) for high polymers.

6) 68— du  u=log,
e+ 1

Relaxation spectrum derived by Kirkwood and Fuoss (59).

) g ¢ (7l7) drjom

Dielectric relaxation spectrum derived by Voglis (60) from experi-
mental dynamical data on dielectric after-efiect.

(®)

0 Tp< T < ®
sin o = T 1—o
% [ ] d= 0 <7<

T To—T

Dielectric relaxation spectrum derived by Cole (61) from data on
dielectric dispersion.

&) - g dr/7" 0O<n<1

Dielectric relaxation spectrum derived by Schweidler (3) for dielcclric
after-effect. Corresponds also to Andrade’s creep function (62) and Llo
the (linear) Nutting equation (63).

0 0 <t<my
(10) { Bdrfc 7 < T < Ty
‘ 0 Ty < T w00

This expression was introduced by Becker (10) who used it Indistine-
tively for both the retardation and the relaxalion spectrum. Il was
applied by Richter (49) in Lhe discusslon of the magnelle after-eltocl,
Tobolsky and co-workers (64) used It recenltly as an expression for the
relaxation spectrum, and Buchthal and Kalser (60) for the relardation
spectrum. In u less goneral way, wilh tho restrietlon s, =o0 11 was
used by Lolhersich (48) and Gross (G6),

THEORIRS OF VISCORLAWTIOITY h
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s‘ 0 0 - 77
(1) ¢ Bdxfmm T, - w < T n apositiveinteger
< V] Ty < T < 0

Goueralization ol formula (10) above, discussed as relaxation spec-
trum with n == 0,1,2, by R, D. Andrews (21 ).

0 0 <t<my
B
= T <T< T
. ' — 172 1 2
(12 Clertoge AT 4
( | 1 — vj7y
0 Ty << T < ®©

ltolaxation spectrum corresponding to a retardation spectrum given
by tormula (10) above, calculated by Buchthal and Kaiser (65), and
with the restriction r, = 0 by Kuhn (8) and Gross (66).

1 cos (axw/2) cosh (x 1)
T cos? (ar/2) 4 sinh? (xu)

Dlclectric relaxation spectrum derived by Fuoss and Kirkwood (4)
from dicleetric loss data.

(13) du u = loge /7

sin (m m)
"2n cosh (mu) 4 cos (m )

(14) du u = loge /7.

Dlelectric relaxation spectrum derived by Cole and Cole (65) from
lolectric dispersion. The function was proposed by Gross (7) as expres-
slon for the retardation spectrum ; it was shown that it can be used simul-
tancously for boththe retardation and the relaxation spectrum (without
plustic deformation) provided the value of the constant t, is adjusted.
When plastic deformations are taken into account, the retardation spec-
trum remains unchanged, but the relaxation spectrum is altered. The
modified relaxation spectrum was given by Pelzer and Gross (7). The
funclion is also discussed by Nolle (9).
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