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a b s t r a c t

The constitutive models for the viscoelasticity of polymers are presented for determining molecular
weight distributions (MWDs) from viscosity measurements. The inversion of this model derived from
control theory and melt calibration procedure connects the relaxation modulus, viscosity, and other flow
properties of a polymer. The linear principle enables simultaneous and accurate modelling of the relax-
vailable online xxx

eywords:
olydispersity
omplex viscosity
elt calibration

ation modulus and of viscosity flow curves over a wide range. Starting from viscosity measurements, the
new model is used to determine the MWD, linear viscoelastic relaxation moduli, and the relaxation spec-
tra of polyethylene of different grades. In addition, two benchmark analyses of bimodal polystyrene are
reported, and the capability of the model is proven by the two-box test of Malkin. The error of the mod-
elled viscosity is smaller than that for previously reported models. One of the main features of this work
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. Introduction

Bersted et al. made one of the most successful early attempts to
nd a relationship between the viscosity flow curve and molecular
eight distribution (MWD), using the partition model [1–7]. The

nverse problem of how to determine the MWD from viscosity was
escribed by Malkin [8], and is known to be an ill-posed problem
9–16].

In our model, once the relation between the structure and mea-
ured data is set up, other properties are computed simultaneously
n a frequency or time scale.

Our companion paper [17] presents the main concepts of the
rocedure, viscoelasticity, relationships to chain structures and
ynamics, and the mathematical treatment by linear viscoelas-
ic relaxation modulus. This paper presents the computations and
esults for the complex viscosity.

For a constant frequency it is misleading to use entangle and
ousean relaxations and relaxation times, since chain dynamics
iffer (as explained in Sections 2.1 and 2.2). We simply consider
mainly) elastic rheologically effective distribution (RED′)w′(log ω)
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoelasti
viscosity data, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2

nd viscous RED′′ w′′(log ω).
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ctrum procedures were used to generate and model linear viscoelasticity.
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. Theory

.1. Modelling viscosity at different steady-state flow rates

We have developed a principle for using complex viscos-
ty data obtained from a dynamic rheometer measured in the
requency-sweep mode. As described in the companion paper
or the relaxation modulus, modern control theory as applied to
ynamic systems can be used to derive the formulas for frequency
ate ω and relations to distributions by the melt calibration. In this
aper we use MWD as a function of frequencyw′

i
(ω) = wi(M) from

unction of molecular weight M in which wi is the weight fraction
f component i in the mixture. Now the development procedure
an be started from the principle � ∗ (ω) =∑wi(M)�∗

i
(ω) as the

um of independent contributions according to Graessley [18] to
et complex viscosity functional [19] for � ∗ (ω) =

∑
wi(ω)�∗

i
(ω).

The basic idea is to model steady impulses and the summed
tress resulting from chain dynamics between molecules of dif-
erent molecular sizes at a steady frequency rate ω. With the
ormalized rheologically effective distribution (RED),w(ω), and the

mpulse response, h(ω), we obtain system response y(ω) according
o control theory as follows:∫
c models. Part II. Recovery of the molecular weight distribution using
008.07.010

(ω) =
ω

−∞
w( )h(ω − ) d . (1)

As the MWD function is normally a function of logarithmic vari-
bles, or here RED w(log ω), we have to rewrite all variables and

dx.doi.org/10.1016/j.jnnfm.2008.07.010
http://www.sciencedirect.com/science/journal/03770257
mailto:tommi.borg@tomcoat.com
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ARTICLE ING Model
JNNFM-2867; No. of Pages 10

2 T. Borg, E.J. Pääkkönen / J. Non-Newtonia

Nomenclature

Hf conversion factor between M and ω scales
M(ω) calibration curve for melts
Mf structural value
Mf0 structural value at the reference temperature
P′ elasticity value
P′′ viscosity value
R ratio of effective distribution ranges
w′(ω), w′(log ω) rheologically effective distributions, (elas-

tic) RED
w′′(ω),w′′(log ω) rheologically effective distributions, (vis-

cous) RED′′

w′
c(ω),w′

c(log ω) characteristic effective distributions, (elas-
tic) RED

ωc characteristic frequency
�∗

c characteristic complex viscosity
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characteristic frequency ωc as

log
�c ∗ (ω)
�∗

0

%RMSE percentage root-mean-square error function
between observed and fitted viscosity curves

unctions in Eq. (1) on a logarithmic scale: logω− log = log(ω/ ),
nd d is written as d(log ). System response y(log ω) = log(� ∗
ω)/�∗

0) is a normalized complex viscosity �* with zero viscosity
∗
0. We can rewrite the presented complex viscosity functional for
he normalized complex viscosity in the steady frequency rate as
ollows:

og
� ∗ (ω)
�∗

0
= −P ′

∫ logω

−∞
w(log  )

(
log

ω

 

)
d log  . (2)

We use entanglement relaxation modulus and Rouse relaxation
nd the respective REDs to illustrate the procedure. Complex vis-
osity �*(ω) has a different physical origin and chain dynamics
t a steady frequency. At higher steady frequencies, an oriented
nd disentangled chain tries to relax and re-entangle, conforming
ainly to constant stress with an elastic response according to RED′
′(log ω). At very low steady frequencies, molecular friction gen-

rates mainly constant stress with a viscous response according to
ED′′ w′′(log ω). During the constant state it is misleading to use
ntangling and Rousean relaxations; instead we simply consider
mainly) elastic RED′w′(log ω) and viscous RED′′w′′(log ω) over the
ormal data measurement range. The complete formula for �*(ω)
t different frequencies can be expressed by common logarithmic
istributions as

log
� ∗ (ω)
�∗

0

= −
∫ log ω

log ω/T

(
P ′w′(log  ) + P ′′w′′

(
log

 

R

))
log

ω

 
d log  .

(3)

here scalar values P′ and P′′ are elastic and viscous constants,
espectively. This is achieved simply by copying functionw′(log ω)
fter dividing ω by the ratio, R, of the frequency-rate ranges to
btain the distribution, w′′(log(ω/R)), if better information is not
vailable. Viscous RED′′ w′′(log(ω/R)) is outside the range of stan-
ard viscosity measurements, but at very low frequenciesω also has
lastic effects. During steady-state frequency, the longest chains
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoelasti
viscosity data, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2

re no more effective for the viscosity and we have to use the
ower bound of integration logω− log T = log(ω/T) instead of the

inus infinity limit. The sampling band is still wide in the range
= 100,000/s for polydisperse polymers.
 PRESS
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The model described by Eq. (3) includes complex viscosity �*(ω)
ithout difficulty, but solving distribution w′(ω) is known to be a

everely ill-posed problem.

.2. Conversion from the distribution w(ω) to w(M) (MWD) by
elt calibration

When an effective distribution function (RED′) w′(log ω) is
ound from the best fit to the viscosity, we must convert w′(log ω)
o a function of molecular weight, MWDw(log M), using a conver-
ion factor between scale Hf and the polymer structural value Mf.
he background of the melt calibration is presented earlier [17];
n the present paper we present the modelling of the steady shear
onforming to a statistical orientated or stressed sphere linked to
ts midpoint.

The relation between the molecular weight scale M and the fre-
uency scaleω is obtained using a homogeneous linear differential
ormula. The additional decrease in dM – converted by Hf on the

scale according to – dM/dω – must equal the molecular weight
cale divided by frequency M/ω:

f
dM
dω

+ M

ω
= 0 (4)

Solving Eq. (4) yields a simple relation for the melt calibration,
(ω), as a function of frequency, where the value of Mf is M at
1 = 1/s:

=Mf
(
ω1

ω

)1/Hf
(5)

Conversions can be performed using a standard variable trans-
ormation as multivariate change-of-variable formula, Eq. (5), and
he exponent (i.e. conversion factor between scales Hf and the poly-

er structural value Mf). MWD w(M) = dW(M)/dM, and W(M) is
he cumulative distribution of weight fractions of chains that, in the

ost-used semilogarithmic scale, isw(log M) = dW(M)/d(log M).
ll distributions are normalized using an integral as for the follow-

ng example for w′(log ω):

+∞

−∞
w′(log ω) d log ω = 1 (6)

The correct value of Mf for each polymer type is found by
tting data from gel-permeation chromatography (GPC) and size-
xclusion chromatography (SEC), and dynamic measurements and
odels.
The inversion ω∝ 1/M generated from Eq. (5) is used in evalua-

ions. High and low frequency rates correspond to small and large
olecules, respectively. The calibration curves for melt (i.e. M(ω))
ay also be numerical function in practice.

.3. Effective distribution w(ω) from viscosity measurements

We have to extract effective distribution w′(ω) from analyt-
cal Eq. (3), but solving this directly is known to be a severely
ll-posed problem. Using a procedure similar to that described for
he relaxation modulus, we obtain characteristic �∗

c for constant
c models. Part II. Recovery of the molecular weight distribution using
008.07.010

= − log
ω

ωc

∫ logω

−∞

(
P ′w′(log  ) + P ′′w′′

(
log

 

R

))
d log  

(7)
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Fig. 1. Flowchart for the algorithm used to determ

To use viscosity measurements to detect the effective distribu-
ion, w′(ω), we have to solve Eq. (7) for RED′ function w′(log ω) by
eriving characteristic distribution w′

c(ω) as follows:

w′
c(log ω)

= − d
d log ω

1
P ′

(
log (� ∗ /�∗

0)
log (ω/ωc)

+P"

∫ logω

−∞
w′′
(

log
 

R

)
d log 

)
.

(8)

Normally, distributionw′(log ω) and its copyw′′(log(ω/R)) have
ero or minimal overlap. This happens rarely with a broad MWD
nd a high polydispersity index (MwR > 20), but can be easily
anaged during the computation by performing the subtraction
′(log ω) −w′′(log(ω/R)) before conversion for the output MWD.

his overlapping situation differs from unentangled and entan-
led molecules found with the bimodal distribution discussed by
éonardi et al. [15,16], but may have an effect on the computed
alues of P′ and P′′.

.4. Assumptions and limitations

The measured properties of a polymer are always described very
ccurately by RED w(ω) or w(t), as derived from measurements
ccording to Eq. (8) or computed solution from Eq. (3). The impor-
ant question is whether or not the w(M) generated by the melt
alibration, computed by Eqs. (3) or (8), is correct. This can only be
nswered by making comparisons of the derived MWD with values
rom other procedures, such as GPC, as is done in Section 4. There
s a major problem in such comparison work: GPC/SEC works well

ith soluble polymers, such as polystyrene (PS), but may exhibit
ystematic errors when applied to polymers with low solubility,
uch as polyethylene (PE). Secondary PE contains very long and
hin molecules, and during shear the modelled statistical effective
phere may tend toward the statistical plane direction, as indicated
y the detected value of Hf = 2.05 differing from the common value
f Hf = 4 for many types of polymer.
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoelasti
viscosity data, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2

We can measure viscosity only over a limited frequency
ange, but this can be extended using our models. The accu-
acy of the method deteriorates as the true polydispersity
f the MWD increases. Master curves for viscosity generated
y time–temperature superposition conversions have distortion

r
a

e MWD and the modelled viscoelastic properties.

oints for derivations at junction points of different temperatures,
s shown below with PS samples.

. Numerical methodology

.1. Computation description

The principal algorithm used to implement the presented for-
ulas is described on a step-by-step basis based on the measured

omplex viscosity data �∗
obs as shown in the flowchart in Fig. 1.

As indicated in Fig. 1, the computation is performed in three
hases: initialization, iteration, and best-fit routines. The initial-

zation routine involves the following steps:

1. Measured complex viscosity data (�∗
obs) is imported from the

database.
. Initial values are given for structural factor Mf and the relation

exponent for the Hf scales, and random values are used for elas-
ticity P′ and the viscous P′′ factor.

. The observed �∗
obs data are solved according to Eq. (8) by

obtaining the observed characteristic effective distribution
RED′

obsw
′(log ω)obs segment. During the derivation there is a

discontinuity at ωc, which must be omitted.
. Distribution-segment fits to w′(log ω)fit are approximated on

both sides of the w′(log ω)obs curve. The procedure can be
performed by extrapolating from w′(log ω)obs lines, fitting the
normalized distribution withw′(log ω)obs, or using a priori infor-
mation for the MWD. When the MWDs are narrow compared to
the respective frequency range, segment fits do not have any
effect since w′(log ω)fit = 0.

. The RED′ w′(logω) is normalized.

. The RED′′ distributionw′′(log(ω/R)) is generated simply by copy-
ing RED′ w′(log ω), if better information is not available.

.2. Iteration process

The iteration routine involves the use of several loops to accu-
c models. Part II. Recovery of the molecular weight distribution using
008.07.010

ately fit the modelled viscosity with that measured at the lowest
nd highest frequencies:

7. The �∗
obs data are solved according to Eq. (8) to generate

w′(log ω)obs.

dx.doi.org/10.1016/j.jnnfm.2008.07.010
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The structural and conversion factors (Mf and Hf) between
ig. 2. Data flowchart of the procedure. Direct results are shown by thicker lines on
nside circles correspond to the steps in Fig. 1.

8. Distributions RED′ w′(log ω) and w′′(log(ω/R)) are normalized.
9. The wide-range fit �*fit is calculated from w′(log ω) and
w′′(log(ω/R)) by integrating according to Eq. (7).

0. The values of P′ and P′′ are adjusted by a bracketing procedure to
reduce the values of the lowest and highest frequency points of
the difference viscosity curve (��∗ = �∗

obs − �∗
fit) to zero within

an assigned error.
1. This iteration loop is performed until the highest and lowest

data points are equal to the modelled viscosity values, or numer-
ically��* = 0 at those points.

.3. Fitting routines

Least-square procedures are widely used in numerical compu-
ations. Here the quality of the fit between the observed �∗

obs and
redicted�∗

fit viscosity values was quantified using a modified least-
quare procedure called the percentage root-mean-square error
unction (%RMSE) [20]:

RMSE = 100
N

√√√√ N∑
i=1

(
�∗

obs − �∗
fit

�∗
obs

)2

(9)

here N is the number of data points:
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoelasti
viscosity data, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2

2. The best-fit routine is used to find the smallest error (based
on the %RMSE value) between viscosity measurements and the
modelled viscosity.

ig. 3. Complex viscosity of Borealis HDPE Sample 4, Sample 5, fictional Malkin’s
wo-box test and Sample 4 with artificial error point. The data were used to compute

WDs for Figs. 4–6, 9 and 10.

s
o
a
o

F
c
c

ales, except for thew scale, and the thinner lines are the modelled values. Numbers

3. Convergence of the %RMSE value is checked so as to find the
minimum of all %RMSE values obtained during iterations.

4. If there is still a chance to find a better fit, iterations are
continued after slightly adjusting the distribution-segment fit
w′(log ω)fit for the new position, and again applying the itera-
tion routine to obtain the RED′.

5. When the best fit is found, we convert w′(log ω) to the final
MWD w(log M) using Mf and Hf values by the melt-calibration
concept according to Eq. (5).

6. Check if the analytical method described by Eq. (3) has already
been used.

17. Convert constants used in the analytical method into a new
complete loop, using the same procedure as for the character-
istic method as much as possible. This improves the likelihood
of solving analytical Eq. (3) to obtain the RED′ and MWD with
standard solution methods based on a priori information using
parallel computing.

8. Show and compare results obtained from both the fast integral
(Eq. (8)) and analytical (Eq. (3)) methods.

Also, wide-range and accurate viscosity fits and relaxation mod-
lus G(t) are computed [17], and spectrum h(�) is computed
ccording to Eq. (10). Fig. 2 shows the results.
c models. Part II. Recovery of the molecular weight distribution using
008.07.010

cales are found for new polymer types by comparing the results
btained with GPC and SEC. Mf and Hf influence only the aver-
ge molecular weight M̄w and MwR, respectively. A segment
f the distribution related to the MWD is gained directly by

ig. 4. MWD curve for Borealis HDPE Sample 4. The thicker segment of the MWD
urve has been computed directly from viscosity data by derivation. The viscosity
urves are also shown for measured (thick) and computed (thin) segments.

dx.doi.org/10.1016/j.jnnfm.2008.07.010
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ig. 5. MWD curve for Borealis HDPE Sample 5. The received GPC data are labelled
s “Database MWD” on the chart. The viscosity curves are also shown for measured
thick) and computed (thin) segments.

erivation from the measured data, and then several rheological
roperties are computed by integrating the derived and modelled
istributions.

The formulas contain a variable in the exponent, and hence
n the numerical computation practice we need to consider
ogarithmic and exponential functions simultaneously during
yclic derivation, integration, and for other computations – this
ower-integral-logarithm-derivation processing is a very unstable
echnique due to the presence of some difference between the

easurements and the model values. We therefore adapted the
tandard numerical methods found in textbooks for this case.

.4. Relaxation spectrum

The relaxation spectrum h(�) can be approximated by deriv-
ng relaxation modulus G(t) according to the procedures presented
y Tschoegl [21]. The following equation is an example of how to
btain h(�) using up to the third derivative of G(t):

(�) = − dG(t)
d log t

+ 3d2G(t)

2(d log t)2
− d3G(t)

2(d log t)3
|t=3� (10)

.5. Utilized software
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoelasti
viscosity data, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2

The RheoPower software package comprises two separate soft-
are programs: (1) the RheoAnalyzer mode, which is used to
nd the MWD from viscosity or relaxation modulus curves; and
2) the RheoDeveloper mode, which is used to find modelled
urves from structure. Both programs give simultaneous results

t
L
m
i
L

ig. 6. PS benchmark test for workshop participants to carry out and present their own
0 wt% (60,000 g/mol PS) mixture of PS; and (b) “gstern” is an inverse mixture (ratio of 80
 PRESS
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ver broad ranges of viscosity, relaxation modulus, and spectrum
ts.

Using the RheoAnalyzer program to find the MWD from viscos-
ty data requires the viscosity flow curve as well as the values of

f and Hf. The RheoDeveloper mode involves the following proce-
ures:

1. Draw the MWD or import a data file.
. Obtain factors Mf and Hf for a similar polymer using RheoAna-

lyzer.
. Evaluate the values of P′ and P′′, and combine these with a single

data point to produce the viscosity function.

.6. Short computation history and set of equations

The development of the software for our programs has taken
everal years. We initially found Gleissle’s [22] viscometric mirror
elation (�̇ = 1/t) very helpful, and the second generation of the
oftware package was developed based on differential equations
nd rheological phenomena. The third generation of the software is
ompiled in fluent binary form, and can complete the computation
n minutes when running on a standard PC. In contrast, computa-
ions using the first version of the software required hours or even
ays.

. Experimental

.1. Procedure and test polymers

All of the computations were performed using components of
he software package running on a standard PC with the char-
cteristic model except where stated otherwise, since a detailed
resentation and comparison of the results from the analytical
odel is beyond the scope of this article. The computation is per-

ormed after first importing a data record into the databases and
electing Mf and Hf. It is well known that among polymers, detecting
he MWD and modelling the rheology is most difficult for poly-
lefins. This is why we selected mainly high-density PE (HDPE) and
ow-density PE (LDPE) samples, although the procedure is now also
ery accurate for amorphous polymers such as PS.

Borealis Polymers kindly provided us with data of two HDPE
amples: (1) a Ziegler–Natta catalyzed HDPE (coded as Sample 4 in
c models. Part II. Recovery of the molecular weight distribution using
008.07.010

his paper) and (2) a commercial grade HDPE (coded as Sample 5).
upolen 1840H LDPE by BASF was adopted as the LDPE sample, since
easured data were available and the material is widely reported

n the literature. The sample was a modern version of the classical
DPE IUPAC A, or “Melt I”, first reported by Meissner [23,24].

results from data: (a) “gstern 2080”, describing a 20 wt% (177,000 g/mol PS) to a
:20). Dashed lines are data from GPC/SEC measurements.

dx.doi.org/10.1016/j.jnnfm.2008.07.010
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ig. 7. Measured viscosity curves for Lupolen 1840H LDPE at temperatures ranging
rom 130 ◦C to 250 ◦C in 10 ◦C increments. The points are measured data provided by
ASF, and the curves indicated over a wider scale were modelled by software. The
verage error (%RMSE) between the measured and modelled viscosities is 0.0009%.

PS samples were semi-blind data, in that their measure-
ent manner and procedure, and origin and manufacturer were

nknown. The data for two samples were received at a workshop,
s explained below, and were simply marked “gstern 2080” and
gstern”.

In the first stage we used data provided by the polymer manu-
acturer (HDPE) or data made for the benchmark at the workshop
PS), and in the second stage we used the data published in the
iterature compared with the data provided by the polymer manu-
acturer (LDPE). Finally, we performed two tests with fictional data
o analyze the error sensitivity.

.2. Measured viscosity data

Borealis Polymers gave us permission to use their HDPE vis-
osity data measured with a plate–plate rheometer. The company
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoelasti
viscosity data, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2

nformed us that the data for Borealis Samples 4 and 5 were
ecorded by a strain-controlled device at a small strain amplitude
nd a temperature of 190 ◦C. The data are shown in Fig. 3.

BASF gave us permission to use their oscillating-rheometer data
or Lupolen 1840H LDPE, measured at temperatures from 130 ◦C to

B
M

S
c

able 1
ain characteristics of all investigated samples and computations

Ta Mwb Mw/Mnb

art I: Fig. 3b 100 000 1.2
DPE IUPAC A 150 480 000 25.0
art II: HDPE Sample 4 190 113 000 5.9
DPE Sample 5 190 224 000 17.4
S gstern 2080 170 99 118 1.4
S gstern 170 170 615 1.3
DPE Lupolen 1840H 130 214 404 13.3
DPE Lupolen 1840H 140 235 996 14.3
DPE Lupolen 1840H 150 239 973 14.6
DPE Lupolen 1840H 160 238 833 14.2
DPE Lupolen 1840H 170 239 191 14.3
DPE Lupolen 1840H 180 239 505 14.1
DPE Lupolen 1840H 190 239 580 14.4
DPE Lupolen 1840H 200 237 497 14.0
DPE Lupolen 1840H 210 240 150 14.2
DPE Lupolen 1840H 220 215 824 13.5
DPE Lupolen 1840H 230 236 195 14.4
DPE Lupolen 1840H 240 239 123 14.3
DPE Lupolen 1840H 250 203 579 12.5
ictional Two-box 256 000 17.0

a Measured temperature in Celsius ◦C.
b Computed average molecular weightMw in g/mol and polydispersity indexMw/Mn .
c Used structural value Mf and conversion factor Hf. Information not always available, i
d Obtained or used elasticity and viscosity values P′ and P′′ .
e Obtained percentage root-mean-square error function %RMSE.
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50 ◦C (see Fig. 7). The main characteristics of these samples are
isted in Table 1.

.3. Constants

Only two polymer-dependent constants are used. For the HDPE
ample, Mf was 52,900 g/mol at 190 ◦C and the default set of R = 106

as set for the distance for the ratio of effective distribution ranges.
he bimodal HDPE (Sample 5) exhibits exceptional polymeriza-
ion, and thus it has Mf = 70,000 g/mol. An ex For the LDPE sample,
f = 37800 g/mol at 150 ◦C was used. The relation scale exponent for

E, Hf = 2.05, was held constant for all polyolefin cases. For compar-
son, the respective constants for PS were Mf = 136,000 g/mol and
f = 4. Please note that the values P′ and P′′ were obtained using

he viscosity-fitting procedure, with no ad hoc constants or values
eing used.

A constant characteristic frequency ofωc = 1/s or the mean value
f the highest and lowest measured frequencies, and a constant
haracteristic time of tc = 10−6 s was used for relaxation simula-
ions.

.4. MWD from HDPE viscosity data

Fig. 4 shows the measured MWD for Borealis Sample 4. The
hicker segment of the MWD curve was computed by derivation
irectly from the viscosity data, which is a well-posed result as
hown by comparison with the original measured viscosity. The
odelled wide-range fitted-viscosity curve and the earlier known-
WD curve are still mildly ill-posed, meaning that the amounts of

ow and high fractions are not accurate even though the computa-
ion is stable. In summary, the generation of this chart required the
imultaneous application of computing and modelling for MWD,
nd modelling of the wide-range viscosity curve from the devel-
ped MWD, as described in Section 3. Using the viscosity data of
c models. Part II. Recovery of the molecular weight distribution using
008.07.010

orealis Sample 4, our computation (from rheological properties to
WD) procedure produced M̄w = 113,000 g/mol and MwR = 5.9.
The respective values obtained from GPC measurements for

ample 4 were M̄w = 132,000 g/mol and MwR = 4.1, which indi-
ates that the error was at the level of numerical errors (with

Mfc Hfc P′d P′′d %RMSEe

37 800 2.05 0.10 0.10
37 800 2.05 0.38 0.20
52 900 2.05 0.40 0.10 0.0014
52 900 2.05 0.30 0.40 0.0015
136 000 4 0.39 0.08 0.0030
136 000 4 0.56 0.16 0.0037
32 508 2.05 0.21 0.43 0.0011
35 532 2.05 0.28 0.38 0.0007
37 800 2.05 0.26 0.39 0.0011
40 068 2.05 0.28 0.35 0.0007
42 092 2.05 0.32 0.32 0.0007
45 360 2.05 0.35 0.29 0.0007
47 628 2.05 0.35 0.27 0.0007
50 652 2.05 0.37 0.25 0.0007
52 920 2.05 0.38 0.25 0.0007
55 188 2.05 0.41 0.21 0.0011
57 456 2.05 0.34 0.24 0.0012
60 748 2.05 0.45 0.17 0.0011
62748 2.05 0.41 0.16 0.0015
70 000 2 0.30 0.32 0.0380

f the used rheometer type was plate-plate or cone-plate.

dx.doi.org/10.1016/j.jnnfm.2008.07.010
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Fig. 10. Fictional Malkin two-box test. The viscosity curve was generated by the
RheoDeveloper (MWD-Pro, i.e. from MWD to the properties) software, starting from
the data labelled “Original MWD”. The viscosity scale is arbitrary, but the relative
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ig. 8. Summary of Lupolen 1840H LDPE MWDs computed from data measured at
emperatures from 130 ◦C to 250 ◦C (in 10 ◦C increments). The deviation in M̄w was
.3%, indicating that the procedure was repeatable.

RMSE = 0.0014%). It is known that GPC measurements are com-
arative (i.e. absolute values cannot be obtained), and become less
ccurate for higher molecular weight (HMW) fractions.

Fig. 4 shows the computed MWD for Borealis Sample 5. The vis-
osity values are shown for measured (thick) and computed (thin)
egments.

For Fig. 5 (Sample 5), we also received GPC data from Bore-
lis, labelled “Database MWD” in the chart. GPC showed M̄w =
80,000 g/mol and MwR = 22.2, and the software produced M̄w =
24,000 g/mol and MwR = 17.4, indicating that the software did not
verestimate the HMW fractions.

An interesting observation is the bimodal shape of the MWD
urve, which is especially evident in Fig. 5. The MWD data has a
imodal shape according to GPC measurements, and this was also
eproduced in our computations.

The rheological method appears to be more sensitive than
PC/SEC chemical methods for detecting bimodal MWDs. No sys-

em smoothing was evident when GPC devices were used to
easure the MWD for PS, but with PE there appeared to be sig-

ificant smoothing coming from the procedure. We found that GPC
moothed more as our characteristic method based on derivation
rom viscosity data.
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoelasti
viscosity data, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2

.5. Benchmark tests for PS

The organizers of the “Second Workshop on Inverse Problems
n Rheology and Related Experimental Techniques”, held in Ger-

ig. 9. Effects of characteristic frequency ωc on viscosity obtained using the char-
cteristic model, measured data for ω in the range from 0.007/s to 3/s at 150 ◦C,
nd analytical fits of Lupolen 1840H LDPE. All simulations are accurate within the
easurement range except for ωc = 0.000001/s.

i
t
“
t
a
T

F
i
f

hanges are in agreement with the theory. Using the generated viscosity curve, the
WD results shown here were generated again using RheoAnalyzer (Pro-MWD).

he recalculated fitted MWD is very close to the original MWD, with differences
nly evident at the peaks.

any during May 9–11, 2001, arranged a public benchmark test
or participants to carry out and present their own results. The
rganizers provided information as distribution charts measured
y GPC on the MWDs, but the manufacturer remained unknown.
e extracted PS data from G′ and G′′ master curves to develop

* as arranged by the organizers. According to the parameters of
he benchmark test, no other information on the measuring pro-
edure was available, but the organizers did reveal that the given
WDs were measured chemically. We show two bimodal results

f samples “gstern 2080” and “gstern” in Fig. 6. These narrow –
ut still bimodal – MWD results are wholly analytical according to
haracteristic model: chemically measured MWDs are indicated by
ashed lines as given in the MWD forms distributed by the work-
hop organizers.

This test not only demonstrated the capability of detecting
imodality of both samples, but also showed that the generated
aster curves in the range 0.01/s <ω < 100000/s have severe errors

n the joint points of different temperatures. For the complete mas-
er curve, the error was very high, at %RMSE = 0.5000%, and for
c models. Part II. Recovery of the molecular weight distribution using
008.07.010

gstern” it was %RMSE ≈ 2%. We had to narrow the data range for
he computation to reduce the error, because the data were prob-
bly measured at a single temperature over this frequency range.
hus, the used frequency range 0.06/s <ω < 100/s for “gstern 2080”

ig. 11. Simulation test for the MWD shows how a small (1%) error in a single viscos-
ty data point can distort the MWD curve of Sample 4 (shown in Fig. 3). An artificial
requency error of 0.1/s was added to the viscosity.

dx.doi.org/10.1016/j.jnnfm.2008.07.010
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ave %RMSE = 0.0030% and for “gstern” the range 0.02/s <ω < 100/s
ave the error %RMSE = 0.0037%. Therefore, the joint points of dif-
erent temperatures in the master curve generate an error that is
00-fold larger, and hence they are not usable in this application.

With these narrow bimodal MWDs, we did not need to use filling
WDs at the sides or w(ω)fit = 0, and the complete relationship
as analytically well-posed.

.6. MWD from LDPE viscosity data

The viscosity of Lupolen 1840H LDPE measured at temperatures
rom 130 ◦C to 250 ◦C is shown in Fig. 7, where the points are mea-
ured data provided by BASF. The wide-range modelled viscosity
urves are based on computations.

The MWDs of LDPE computed at 13 temperatures are summa-
ized in Fig. 8. This test revealed that temperature had a minor effect
n the values of the constants:

f =Mf0 + (T − T0) × 250.

For LDPE, Mf0 was 47,600 g/mol at 190 ◦C, as for HDPE was
f = 52,900 g/mol at 190 ◦C, and at 250 ◦C Mf for LDPE was

2,600 g/mol. We found that the average error between the mea-
ured viscosity data and the model was %RMSE = 0.0009%, which
s more than 50 times smaller than that for any other published

odel.
The average M̄w was 235,000 g/mol (with a deviation of 2.3%)

nd MwR = 14.1 for all computations.
The effects of different values of characteristic frequencyωc are

hown in Fig. 9. Within the measurement range, the modelled ana-
ytical and characteristic values are very similar to the measured
alues. Since we cannot measure very high and low frequencies, the
gure includes some estimated values. Moreover, there are mini-
al differences between the analytical and characteristic models

or ωc > 0.0001/s, and the optimal value for ωc can be found by
tting procedures.

.7. Malkin’s two-box test
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoelasti
viscosity data, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2

The two-box test by Malkin [8] was used to simulate trans-
ormations from the MWD to the viscosity flow curve, and vice
ersa. The RheoDeveloper software was first used to draw two cubic
oxes, simulating bimodal MWDs. The computed viscosity curve

ig. 12. Typical %RMSE errors for different known models compared to the computa-
ion levels for modelled viscosity curves. “Records” indicates errors in data, “Models”
ompares different models for viscosity curves and “RheoAnalyzer” relates to data
ssurance. Our method is more than 100 times more accurate than other models at
odelling viscosity curves.

t
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ig. 13. Relaxation moduli of Lupolen 1840H LDPE at temperatures from 130 ◦C to
50 ◦C (in 10 ◦C increments).

as saved in the databases and used by the RheoAnalyzer software.
he results are shown in Fig. 10, which indicates the generation of
inimal noise that only slightly distorts the MWD boxes. The source

f the noise is known and coming from tuned derivation, but the
oftware is for practical computations. Moreover, M̄w and MwR are
lose to their original values.

.8. Simulation of sensitivity to data error

A simulation test was performed to determine the effect of a
mall (i.e. 1%) error in the viscosity data point on the MWD results.
aking the measured viscosity data of Borealis Sample 4 used in
ig. 11, we generated an artificial 1% viscosity error at a frequency of
.1/s, by changing the originally measured � from 8798 to 8886 Pas.
n a logarithmic scale, this changed the data point from 3.9444 to
.9487, which was impossible to detect visually on the flow curve.

Fig. 11 shows that the computed MWD exhibits significant dis-
ortion on the HMW side, with %RMSE increasing from 0.0013% to
.0018%. It must also be borne in mind that even more severe errors
re caused by measuring-system deviations such as slipping, poor
ixing of compounds, or poor relaxation of the sample. The error

valuation shows that it is impossible to detect the MWD from a
c models. Part II. Recovery of the molecular weight distribution using
008.07.010

anually copied viscosity curve. In this method, moderate absolute
rrors can be present in the viscosity, but the relative errors must
e minimal.

ig. 14. Relaxation spectra of Lupolen 1840H LDPE at temperatures ranging from
30 ◦C (top curve) to 250 ◦C (bottom curve) (in 10 ◦C increments).

dx.doi.org/10.1016/j.jnnfm.2008.07.010
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Fig. 15. What-if analyses for Lupolen 1840H LDPE at 190 ◦C reveals large changes in modelled viscosity, relaxation modulus, and spectrum. (a) Small differences are evident
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n the cubic shape of the MWD. Original values of M̄w and polydispersity MwR are 2
ubic bump, and M̄w = 296,000 g/mol and MwR = 11.0 for the right-side bump. (b) R
elaxation time, and the maximal relaxation time is not used so as to demonstrate
WD (modelled here as complex viscosity �*). (d) Modelled relaxation spectrum h

.9. Evaluation of error

The calculation of the MWD is extremely sensitive to errors in
he recorded data. The influences of error sources and the precision
f records on the estimation are summarized in Fig. 12.

De Vries et al. [20] used %RMSE values of viscosity for the
ell-defined metallocene-based molecular structures of poly-

lefin elastomers and plastomers. Their shear-rate range was
.1/s <ω < 10000/s. The values for %RMSE were in the range 0.6–1.3%
or the model of Bersted et al. and 0.8–1.5% for the cross-model; in
heir (1996) neural net model, %RMSE was in the range 1.2–2.5%.

A simple test revealed that it was possible to copy viscosity val-
es manually to a precision level of log 0.01, resulting in an %RMSE
n the order of 0.5%. The values of %RMSE for our first- and second-
eneration software were in the ranges 0.5–0.05% and 0.05–0.01%,
espectively, and is currently in the range 0.0040–0.0003%. In
ost computation cases we must omit data values for less than
= 0.001/s and records with a range giving increased %RMSE values.
Whilst Fig. 12 lists some typical calculated %RMSE values, the

elative errors were generally much smaller during measurements.
he error for the torque resolution of rheometers is typically less
han 0.1%, which results in a %RMSE of the viscosity flow curve of
.023%. Numerical rounding errors typically produce a %RMSE of
.0013%.

.10. Modelling relaxation modulus and spectrum

The computed relaxation modulus, G(t), is not subject to termi-
al or instrumentation limitations. We set the spectrum maximal
elaxation time, �max, to 400 s.

The wide-range relaxation moduli and relaxation spectra curves
or Lupolen 1840H LDPE computed at 13 temperatures are shown
n Figs. 13 and 14, respectively. These curves are smooth, with only
light variations due to the sensitivity of the derivation.
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoelasti
viscosity data, J. Non-Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2

.11. What-if analyses

Other properties and the influence of changes in the MWD on
he behavior can be simulated using what-if analyses. This enables

a
p
o

i

0 g/mol and 11, respectively. M̄w = 202,000 g/mol and MwR = 11.7 for the left-side
ion modulus G(t). The maximal relaxation time is not set for the spectrum maximal
oss-point of the spectrum in Fig. 15d. (c) Modelled shear viscosity � starting from

he background of principle, where is possible to compute to the
oth directions (Fig. 15).

. Conclusions

A new method for modelling viscoelasticity and polymer prop-
rties has been presented. The underlying mathematical technique
s based on the modern control theory and the concept of melt
alibration. In this study the method was used to determine the
WD from viscoelastic data, and vice versa. The results calculated

rom measured data confirmed that our model for determining the
WD from viscosity measurements works in practice, with the

rror being very small provided that the recorded data are accurate.
he linearity principle makes it possible to model a wide range of
inear viscoelastic relaxation moduli, provides a good and smooth
pproximation to the relaxation spectrum, and models viscosity
ow curves simultaneously and accurately.

The major known limitation of the procedure is the narrow fre-
uency range of the measured data. The accuracy of the method
ecreases when the MWD widens, or when the exponent in the
elation for the Hf scales becomes higher. As mentioned [17], poly-
lefin is a difficult material (Hf = 2.05), whereas PS is easy (Hf = 4).
he linearity principle allows data from different sources to be com-
ined, which should be expanded upon. The attractive subject of

ong chain branching and other fields, as well as different polymer
ypes need to be investigated more thoroughly.

The characteristic method presented in this paper is rapid and
ersatile, and could be used in the quality control of a polymer-
zation process or as a design aid in simulations, for example.
he calculation software could also be used in reverse to calcu-
ate MWDs at higher values, where GPC/SEC measurements are
roblematic, or used in parallel with other methods to enhance
heir accuracy. The results for the analytical model demonstrate
ts usefulness as a tool for investigating the microstructure. We
c models. Part II. Recovery of the molecular weight distribution using
008.07.010

re continuing to develop characteristic and analytical models for
arallel computations, and are comparing different procedures to
btain practical outputs.

The examples shown here have focused on detecting chem-
cal structure distributions of homogeneous polymer melts, but

dx.doi.org/10.1016/j.jnnfm.2008.07.010
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ffectively determining the distributions for rheological properties
RED′) (w′(ω)) is more important in practical processing applica-
ions and for enabling the simulation of flow properties that are
mpossible to measure.

The method is applicable to solutions, and even biopolymers.
hilst the underlying principle is simple, the use of the numerically

ensitive and labile recursive exponent formulas require accurate
ata together with fluent software to achieve high computing accu-
acy.
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