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a b s t r a c t

Constitutive models for the linear viscoelasticity of polymers are presented for the relation between the
relaxation modulus and the molecular weight distribution (MWD). We also compute the MWD from a
simulated relaxation modulus curve by first obtaining the rheologically effective distribution (RED) as
a function of time, and converting this into the MWD by melt calibration; that is, the relation between
timescale and the molecular weight. This procedure has similarities with the widely used universal cali-
bration with solved polymers. The main principles of our technique are applied here to familiar relaxation
olydispersity
elaxation modulus
elt calibration

ontrol theory
nverse problem

modulus data, for which we present two models: (1) an analytical model derived from control theory,
which is known capable of modelling partially observed system and (2) a practical characteristic model
for obtaining usable results. No relaxation time or spectrum procedures are used to model the process
of linear viscoelastic relaxation. The use of relative calculations and melt calibration dispenses with the
need to know the real chain structures such as branching and entangled chain dynamics, and the model
remains useful for future investigations of polymer chain structures and dynamics, such as using tube
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. Introduction

Determining the molecular weight distribution (MWD) or pre-
icting viscoelastic properties requires the relaxation modulus or
pectrum to be generated [1–21]. To overcome this ill-posed prob-
em, several authors have recently used the double reptation model
r the general mixing rule as analysed by Anderssen and Mead [22].
himm et al. [13] provided the first analytical relation for deriving
he MWD from the modelled relaxation spectrum, even though this
s impossible to measure directly.

Here we present two models for the relaxation modulus: The
rst is an analytical model based on the impulse function and
ontrol theory, which are well-known principles in mathematics,
uclear physics and signal control systems. Only two constants
hat depend on the polymer chemical structure are used, with no
d hoc tuning being necessary. The second, characteristic model
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoela
Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2008.07.011

ses the findings of the first model but is more practical and
ses the measured time-dependent relaxation modulus, which is
elated to the MWD, w(M). The computation strategy involves
rst finding a form of the MWD and relations using the rapidly
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nalysed characteristic model, and then confirming the obtained
esults using the analytical model, if necessary. Here we present
he main principles of the new method with the help of the
amiliar relaxation modulus, G(t). The basic criteria described
bove yield the procedure by which the MWD and broad-range
urve of the linear viscoelastic relaxation modulus are simultane-
usly computed from simulated measurements of the relaxation
odulus.

. Theory

.1. Relaxation modulus and structure information by the control
heory

The modern control theory as applied to dynamic systems is
sed to model the relaxation modulus. One of the most important
ypes of analysis is input–output modelling, in which the output
ata resulting from applying a test input to a system are anal-
sed to yield useful information on cause–effect relationships and
stic models. Part I. Relaxation modulus and melt calibration, J. Non-

o reduce the model. Since this viewpoint is new in this field, we
xplain its basis here.

Molecular theories of rheology based on independent chain
esponse (elastic dumb-bell, Rouse, Zimm) or pseudo-independent
hain response (unmodified Doi-Edwards) can be used for predict-

dx.doi.org/10.1016/j.jnnfm.2008.07.011
http://www.sciencedirect.com/science/journal/03770257
mailto:tommi.borg@tomcoat.com
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Nomenclature

Ĝ0 new fitted relaxation modulus at t0
Gc(t) characteristic relaxation modulus
Hf conversion factor between M and t scales
Mf structural value
M(t) calibration curve for melts
P′ entanglement value
P′′ Rouse value
R ratio of effective distribution ranges
wi(t) effective fraction of the group of molecules
w′(t), w′(log t) rheologically effective distribution, (elastic)

RED
w′′(t), w′′(log t) rheologically effective distribution, (vis-

cous) RED′ ′
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c(log t) characteristic effective distribution, (elastic)
RED

ng of the MWD according to Graessley [23] in Polymeric Liquids and
etworks: Dynamics and Rheology (2008). For such systems, equa-

ions for viscosity, recoverable compliance and relaxation time in
ystems of arbitrary polydispersity can be obtained from the stress
elaxation modulus, expressed as the sum of independent contri-
utions. Thus,

(t) =
∑

wiGi(t). (1)

n which wi is the weight fraction of component i in the mixture, and
i(t) is the relaxation modulus for the monodisperse component.

We continue to develop the above principle further by convert-
ng weight fraction wi(M) as a function of molecular weight M to the
unction of time t or effective fraction w′

i
(t) = wi(M) with the found

elation between t and M discussed in Section 2.3. A similar conver-
ion, but in the opposite direction, is widely used in wet chemical
ethods such as gel-permeation chromatography (GPC) tracing
ith time- or size-exclusion chromatography (SEC) for detecting

he MWD.
Knowledge of the factors that influence the effective fraction,

i(t), is not essential, such as different types of chain dynamics,
olecular friction and elasticity, reptation, primitive path fluctu-

tions, constraint release, and other entangled and disentangled
hain dynamics.

Chain types in the effective fraction wi(t) can conform to any
inear short- or long-chain branched (SCB and LCB, respectively)
tructures, combs, networks, H-shapes with multiple arms, or any
ombinations of complete molecules or their segments. The final
tructure, molecular weight or construction of the statistical wi(t)
raction of a single molecule or groups of molecules is not important
t this point—only its effects on viscoelasticity. Section 2.3 discusses
he real sizes of the fractions. Now we rewrite Eq. (1) to get relax-
tion modulus functional as presented by Anderssen and Loy [24]
or G(t) as follows:

(t) =
∑

wi(t)Gi(t). (2)

We introduce the rheologically effective distribution (RED), w(t),
nd impulse response h(t) after induced stress at time t0. Relaxation
odulus Gi(t) in Eq. (2) has relation to a scaled product of P′G0h(ti),

n which constants G is zero modulus and P′ is acting as a scaling
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoela
Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2008.07.011

0
actor. Thus we can rewrite Eq. (2) for G(t) as

(t) = G0P ′
∫ t

−∞
w(�)h(t − �) d�, (3)

g

g

 PRESS
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hich can be explained and developed further by the control theory
ith the explanation starting from the basis.

We excite the system with a small stress induced by a small
ulsed strain that is applied at time t0. Pulse response y(t) is
btained from impulse response h(t) and by sampling the active
olecules in distribution w(t) between some time interval:

(t) =
∫ t

−∞
w(�)h(t − �) d�. (4)

his equation is the familiar linear formula used in control theory,
hich is known as a novel principle to adjust and rule one variable

r function in a closed system and now in our case for MWD. Since
he MWD function is normally a function of logarithmic variables,
r here RED w(log t), we have to rewrite all variables and functions
n Eq. (4) on a logarithmic scale. The logarithmic convolution (also
nown as the scale convolution) can be related to ordinary convolu-
ion by taking the logarithm of t, and since this is a linear operation
t is commutative, associative, and distributive. Thus we can write
(t) = t and d� as d(log �).

Pulse response y(log t) = log(G(t)/G0) is a normalized relaxation
odulus with a maximum value of zero on the logarithmic scale

t t0. The value for zero relaxation modulus G0 = G(t0) is obtained
y fitting G(t) to experimental measurements. We then obtain the
omplete relaxation formula in the case where a small and constant
train is induced:

og
G(t)
G0

= −P ′
∫ log t

−∞
w(log �)(log t − log �) d log �. (5)

With true distributions the normalized response on the log-
rithmic scale decreases, making the overall G(t) a completely
onotonically decreasing memory function, as analysed generally

y Anderssen and Loy [25], and thus we have to add a negative
ign to the right-hand side of Eq. (5). Entanglement constant P′ is
ncluded since not all molecules in the distribution w(t) related
o MWD w(M) will be active during the relaxation process due
o intermolecule interactions by Matsuoka [26]. Also, the relation
�G(t)/�w(t)) ∝ P′ at time step �t depends on the baseline chem-
cal molecular structure, chain types (SCB or LCB) and the average

olecular weight. Therefore, it is necessary to adjust the normal-
zed w(log t) distribution with the value of P′ by feedback to obtain
he fit for G(t) as illustrated in Fig. 1, where the normalized distri-
ution in Eq. (5) is

∞

−∞
w(log t) d log t = 1. (6)

RED function w(t) can be regarded as a GPC trace with a time-
xclusion chromatography or SEC elugram function as a function
f time. The largest molecules exit first from the GPC/SEC column,
n a similar way to these molecules initially having greater relax-
tion effects with many entanglements and structural units during
elaxation experiments or respectively orientating at the lowest
requency and shear rate.

To clarify the differences in the presented principle, we rewrite
he simplified general form of classical integral equations with
ernel k(t, M) used in principle by [1–22], where relaxation time
rocedures are essential. Thus, for normalized relaxation modulus
stic models. Part I. Relaxation modulus and melt calibration, J. Non-

(t) = G(t)/G0, we get a Fredholm-type integral equation:

(t) =
∫ ∞

−∞
w(M)k(t, M) dM. (7)

dx.doi.org/10.1016/j.jnnfm.2008.07.011
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ig. 1. Graphical demonstration of the system and polymer melt. The stress in the
roduct must be negative. The response at time t1 is defined by area A(t1), which

og(G(t)/G0). Precise modelling of system response G(t) for the system input based o

To aid the comparison, we rewrite Eq. (3) in a similar simplified
tyle as

(t) =
∫ t

−∞
w(�)h(t − �)d�. (8)

Both Eqs. (7) and (8) are known as convolution integrals, but
he functional Eq. (8) has no relaxation time procedures or vari-
bles at different scales. Thus there are fundamental differences in
elaxation times � and their discrete spectra are artificial, whereas
ontinuous distribution RED w(t) is a true function in the form of
tatistical distribution for viscoelastic effects and MWD.

The form of the RED w(log t) function may be roughly similar
o the relaxation time spectrum. In summary, there are essential
nd fundamental mathematical differences between the models,
nd the presented RED function w(log t) includes all types of chain
ynamics.

.2. Model for real polymer melts by the analytical model

Real polymer relaxation occurs in two phases: Rouse [27]
elaxation, followed by entangled chain dynamics and reptation,
rimitive path fluctuations and constraint release. We refer to
he second phase here as entanglement relaxation that exhibits

ostly elastic effects and responses. Molecular entanglements
ill relax after deformation roughly at times t > 0.001 s, where
ost observations of G(t) are made. Rouse theory starts from the
olecular friction coefficient, where includes rapid elastic dumb-

ell effects that are mostly relaxed before melts are measured.
e employ familiar terminology to introduce the principle of

ouse (viscous) and entanglement (elastic) relaxations, but as dis-
ussed in Section 2.1, the real chain dynamics are still open and
oth Rouse and entanglement relaxations have viscous and elastic
omponents.

Since we have the same MWD acting for both Rouse relaxation
nd later for entanglement relaxation, we also use the entangle-
ent distribution in common logarithm scale w′(log t) for the

arlier effective Rouse distribution w′′(log tR), which corresponds
o w′′(log t − log R) = w′′(log t/R) by standard time shifting. This is
chieved simply by copying function w′(log t) after dividing t by the
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoela
Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2008.07.011

atio, R, of the effective or “relaxation time” ranges. The distance
or the same point for the effective Rouse and entanglement relax-
tions and the respective distribution, w′(log t), is R = te/tR. Since
ouse relaxation occurs roughly at t < 0.001 s (which is outside the
easurement range) and the form of the effective distribution has

s
d
u
c
w

cules decreases during relaxation in distribution w(log t), and the multiplication
ed by factor P′ to obtain the system response as a normalized relaxation function
back information P′ yields the correct RED function.

minimal effect on the obtained relaxation, the use of w′′(log t/R)
ith a similar form is the best available choice without more infor-
ation; nevertheless, the form of the w′′ distribution can also differ.
e use familiar viscoelastic notation since RED (or RED′) w′(log t)

nd RED′ ′ w′′(log t/R) exhibit mainly elastic and viscous effects,
espectively, in the observation range. We convert the relaxation
ormula of Eq. (5) to the entanglement and Rousean relaxation
escribed by Eq. (9) and impulse response log t − log � = log(t/�).

In practice, the same distribution, w′(log t), is copied earlier to
he timescale, and we obtain the following complete relaxation
ormula:

og
G(t)
G0

= −
∫ log t

−∞

(
P ′w′(log �) + P ′′w′′

(
log

�

R

))
log

t

�
d log �, (9)

here the scalar values are 0 < P′ < 20 for entanglement and
< P′′ < 20 for the Rouse relaxation ranges. The values of P′ and P′′ are
ot ad hoc, but are developed by the software during the procedure
f fitting the relaxation modulus data and w(t) distribution.

Eq. (9) models relaxation modulus G(t) without difficulty, but
olving distribution w′(t) or functions with a logarithmic kernel is
severely ill-posed problem reported by Bruckner and Cheng [28].
herefore, in Section 2.4 we present an alternative solution method.

.3. Melt calibration

We need to convert distribution scales between molecular
eight scale M and rheologically effective scale as a function of time
by introducing the melt calibration, which is the relation between
heological properties and the molecular weight.

A test point in a relaxed polymer melt after small deformation
t t0 can be approximated statistically as a nonrelaxed sphere of
olume V0 with an average molecular size up to M(t0). The appar-
nt sphere of effective molecules starts to shrink as a function of
adius r(t), with those molecules located farthest from the test point
elaxing first due to elastic effects or molecular and any types of
hain dynamics such as reptation, primitive path fluctuations and
onstraint release in longitudinal modes. Molecules of any kind (as
iscussed in Section 2.1) that are farther from the test point deform

ess, as shown in Fig. 2a. The average molecular size inside the
stic models. Part I. Relaxation modulus and melt calibration, J. Non-

phere is M = Mf dV/V0, where Mf is the polymer structural value that
epends on the molecular structure and weight. The effective vol-
me for the nonrelaxed sphere and thus the effective molecular size
hange dM, as a function of r(t), is given by dM = Mf(4/3)�(dr3/V0),
here Hf = (4/3)� ≈ 4.19 is the conversion factor between scales M

dx.doi.org/10.1016/j.jnnfm.2008.07.011
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ig. 2. Relation model for melts, and conversions from the RED to the MWD. (a) In a
o a statistical nonrelaxed sphere of volume V0, which shrinks as a function of radiu
ess deformation relative to the test point. (b) Melt calibration curve M(t) for PS, and
ashed lines. (c) RED w′(log t) from the timescale converted to inverse molecular w

nd t. By induction, we can similarly model all the test points of the
elt, where the distance to walls is greater as r(t0).
The relation between molecular weight scale M and rigid

imescale t is obtained using a homogeneous linear differential for-
ula. The additional decrease in dM converted by Hf on the M scale

ccording to −dM/dt must equal the molecular weight scale divided
y time, M/t, or

f
dM

dt
+ M

t
= 0. (10)

Solving Eq. (10) yields a simple relation for t > 0, which is the
elt calibration, M(t), as a function of time, where for the factor Mf

alue is M at t1 = 1 s:

= Mf
(

t

t1

)−(1/Hf)
. (11)

For polymer measurements, the Hf conversion factor is usually
lose to 4, and Mf takes values between 102 and 106 g/mol. Benoit
nd co-workers [29] introduced the universal calibration concept
or GPC (that was subsequently also applied to SEC), which used
he hydrodynamic volume, and here the nonrelaxed melt volume
s used. Fig. 2b shows the melt calibration curve for polystyrene (PS)
nd compares it to the SEC calibration.

We need to convert RED w′(t) to MWD w(M) or in logarithmic
cales w(log M) = w′(log t). When an effective distribution function
′(log t) is found from the best fit to the relaxation modulus, we can

onvert it by variable transformation to w(log M) using the standard
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoela
Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2008.07.011

s multivariate change-of-variables formula used with GPC/SEC, Eq.
11), and the exponent (i.e., conversion factor between scales Hf and
he polymer structural value Mf results shown in Fig. 2c).

The correct value of the Mf factor for each polymer
ype is found from fitting GPC, SEC, absolute multiangle

c
p

ig. 3. Schematic models of the relaxation modulus. (a) The standard normal rheologica
ts characteristic relaxation is very close to the classical Maxwellian single-element relax
istributions w′(log t) and w′′(log t/R), with constants �c = 10−6 s, P′ and P′′ set completen

og G(t) with illustrated G0 = 10 Pa are shown. Typical similar real polymer has the averag
/Mn below 1.2.
d polymer, a test point in the melt after a small shear deformation at t0 is equivalent
s the farthest molecules or the ends of individual molecules relax first, resulting in
espective typical universal calibration curves for different SEC columns marked by
scale w (top) and MWD w(log M) or w(log M) = w′(log t) using Eq. (11).

ight-scattering measurements, dynamic measurements, and
odels.
The response for RED w′(t) of the different effective frac-

ions is not linear, since different types of polymer mixtures or
ome complex molar structures can be involved, and hence we
ave to use a curve-fitting procedure similar to that used with
niversal calibration as presented in Fig. 2b. The two dashed
onlinear SEC calibration curves in the figure are found in prac-
ice after several analyses. It is noteworthy that the linear curve
or LCB polyethylene (PE) is the same as that for the base

WD.

.4. Effective distribution w′(t) by the characteristic model

We have to extract effective distribution w′(t) from Eq. (9), but
ttempting to do this directly leads to an ill-posed problem. Thus,
o make the computations practical we use the faster and sim-
ler characteristic model to obtain the form of the RED curve and
WD.
We first approximate the convolution integral in Eq. (9) as a

ummation, from which it is then possible to solve derivative w′(t)
irectly by computation. Eq. (4) was previously converted to the

ogarithmic form for system response y(log t), which is actually
he sum of impulse responses as a series of logarithmic time steps

log T as a function of i items:

(log t) =
∞∑

(w(i � log T)� log T)h(log t − i � log T). (12)
stic models. Part I. Relaxation modulus and melt calibration, J. Non-

i=0

If we set �log T → 0, this equation simplifies to the original
onvolution form shown in Eqs. (4) and (5). To obtain the sam-
le or characteristic response yc(log t) for characteristic relaxation

lly effective distribution (RED), w′(t), plotted on a logarithmic scale with �c = 1 s.
ation, with � = 100 s (dashed line). (b) Relaxation by Eq. (13) using the log-normal
ess to 0.1, and R = 104. Both normalized relaxation moduli G(t)/G0 and logarithmic
e molecular weight Mw in the range 100,000 g/mol, and the polydispersity index,

dx.doi.org/10.1016/j.jnnfm.2008.07.011
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Fig. 4. Flowchart for the algorithm used to determine the MWD and the modelled relaxation modulus on a logarithmic scale and respective data flowchart of the procedure.
Thick lines show derivative results, and thin lines are the results for the characteristic and analytical models. The best fit to �G(t)min is obtained by a standard numerical
l
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east-squares computation.

ime �c, we set it equivalent to the shifted impulse response, or
�log T = log �c. The time-shifted impulse response is now con-
erted to log t/�c, and the complete formula becomes a standard
ntegral. See illustrations in Fig. 3. Thus, in analytical Eq. (9), relax-
tion modulus G(t) can be approximated as a standard integral of
he RED and we obtain characteristic relaxation modulus Gc(t) for
onstant �c as

og
Gc(t)
G0

= − log
t

�c

∫ log t

−∞

(
P ′w′(log �) + P ′′w′′

(
log

�

R

))
d log �.

(13)

The logarithmic impulse response has the greatest influence
n this special case at time t0 in Eqs. (4) and (12), where �c is
lso rather small, approaching �log T at small values of index
. These points are most representative of the convolution and
he relations from w′(log t) to G(t) and Gc(t), which we show in
ection 3.3 to be within the measurement error. A novel idea is
o use originally normalized G(t) and w′(t) distribution in both

ethods, for which the lack of absolute values do not cause
ifficulties.

This procedure removes the absolute value of the pulse
esponse, but this is not a problem since we were originally using
nly relative values. The relaxation modulus obtained from this
imple characteristic model is very close to that obtained from the
nalytical model shown in Fig. 5, and within the G(t) measurement
rrors. Both the analytical and characteristic models have the same
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoela
Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2008.07.011

istribution w′(t) giving the system response as relaxation modu-
us data G(t). Of even more importance is that Eq. (13) can be solved
or apparent and characteristic effective distribution w′

c(t) simply
y deriving as follows from the measured G(t) to accurately obtain
he shape of the RED curve:

o
r
c
m
i

w′
c(log t)

= − d
d log t

1
P ′

(
log(G(t)/G0)

log(t/�c)
+ P ′′

∫ log t

−∞
w′′(log(�/R)) d log �

)
.

(14)

Normally, distribution w′(log t) and its copy w′′(log t/R) have
ero or minimal overlap. The effective distribution can be computed
ver several iterations to find the best fit between the measured
nd modelled viscosities. During each derivation, the Rouse distri-
ution w′′(log t/R) can be assumed to be constant, and a new form

s refreshed with a new w′(log t) for each iteration. The RED curve
s precisely obtained from Eq. (14) in the measurement range using
irect numerical differentiation.

Now we can again model G(t) according to analytical for-
ula Eq. (9) using the obtained RED and even attempt to solve
′(log t) with regularization methods and the aid of a priori

nowledge. Since this analytical method requires considerable
omputation time and the obtained RED curve is not accurate,
e only present results for the characteristic model; however,
oth models can complement each other in simultaneous parallel
omputing.

The P′ and P′′ values differ between the analytical Eq. (9) and
haracteristic Eq. (13) model, but their values are easily found by
omputation (Fig. 4).

In summary, we first apply a rapid integration method based
stic models. Part I. Relaxation modulus and melt calibration, J. Non-

n derivatives for the time-consuming cyclic computation. The
elation between MWD and measurements obtained using the
haracteristic method is then confirmed using the analytical
ethod. These two methods are complementary, and can be used

n parallel computing.

dx.doi.org/10.1016/j.jnnfm.2008.07.011
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.5. Relaxation modulus level from viscosity data

In cases where we are using only viscosity data, we do not obtain
he absolute level of the relaxation modulus directly. Since we
imultaneously obtain the zero viscosity (�0) using a wide-range
iscosity fit and the normalized relaxation modulus, g(t) = G(t)/G0,
e need tools to find an absolute value for G0. Here we can use

tandard simple numerical fitting procedures such as bracketing,
hile solving Eq. (13) by testing with new Ĝ0 values to obtain the
ew G0 = Ĝ0.

0 =
∫ ∞

−∞
tĜ0g(t) d log t. (15)

n alternative, simpler procedure can be used if we know even a
ingle data point in the measured relaxation modulus curve G(t)
nd MWD with known constants.

.6. Assumptions and limitations

In principle, relaxation modulus G(t) data are suitable as a data
ource, but have been found to be of limited use in computa-
ions due to distortion resulting from procedural and instrumental
ources. During experiments, some deformation always occurs
efore relaxation. The simulation is at best a two-step process,
ecause earlier states and deformation histories considerably influ-
nce the measured properties. Inertial forces of the oscillating head
f the device also cause visible errors in the G(t) data. However, very
ecently there have been promising developments in rotational
heometers to obtain more accurate G(t) data.

Whilst developing the principle, we found that the relation
etween the measured storage G′(ω) and loss modulus G′′(ω) does
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoela
Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2008.07.011

ot fit accurately in principle, with only the complex modulus G*(ω)
eing reliable. This explains why there is no widely used regular-

zed method for generating the relaxation modulus, G(t). Moreover,
o developed master curves or conversions give direct and accurate
xperimental data for analysis.

d
d
a
t
r

ig. 6. From relaxation modulus to MWD of IUPAC A LDPE at 150 ◦C. (a) Thicker segmen
odelling from complete w(t) of (b) using Eq. (13). (b) Thicker segment of the curve o
easured relaxation modulus G(t) using Eq. (14), and thinner dashed segment was obtain

s in (a). (c) Melt calibration curve M(t) according to Eq. (11) transforms w(t) to MWD w(
PC/SEC techniques. It is now possible to analytical compute G(t) backwards from the obt
ormed by Meissner [30] from 0.1 s only up to 80 s at 150 C. Both analytical Eq. (7)
nd the derived characteristic equation (Eq. (13)) show minimal differences between
he models over the measurable range shown with larger markers, and are virtually
ndistinguishable.

The glassy modulus relaxes within 10−11 s, which can be
odelled easily by adding to Eqs. (9) and (13) the third

ED′′′ distribution P ′′′ w′′′(t) close to the same time period.

. Experiments

.1. Procedure and test polymers

All the computations described here were performed on a stan-
stic models. Part I. Relaxation modulus and melt calibration, J. Non-

ard PC using RheoPower software and the characteristic model
escribed by Eqs. (13) and (14), except for Fig. 5, which also used the
nalytical model. A data record is first imported into the databases,
he Mf and Hf constants are selected, and then the programs are
un on the PC. It is well known that detecting the MWD and

t of measured relaxation modulus G(t) and wider thin dashed curve generated by
f the rheologically effective distribution (RED), w(t), was computed directly from
ed by applying a standard best-fit procedure between measured and modelled G(t)
log M). (d) The MWD is converted from RED function in (b) in a manner similar to
ained MWD so as to check the accuracy of the analysis results.

dx.doi.org/10.1016/j.jnnfm.2008.07.011
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odelling the rheology is most difficult for polyolefins among all
olymers.

LDPE IUPAC A low-density polyethylene (LDPE) was adopted as
he LDPE sample since measured data are available and this mate-
ial has been used in many other studies or “Melt I”, first published
y Meissner [30].

.2. Constants

The default value of R = 106 for distance was set for the Rouse
hear range distribution except for Fig. 3 was used R = 105. For the
DPE sample, Mf = 37,800 g/mol at 150 ◦C was used. The relation
cale exponent for PE, Hf = 2.05, was taken as constant for poly-
lefin with a plate–plate oscillating rheometer. It must be noted
hat Hf = 2.5 represents the use of a cone-plate head, and that
he value for PE has increased recently thanks to developments
n GPC/SEC and viscoelastic measurements. For comparison, the
espective constants for PS were Mf = 136,000 g/mol and Hf = 4,
s commonly used for all other polymers except above poly-
lefin. Please note that the values P′ and P′′ were developed
y the G(t) fitting procedure and no ad hoc constants or values
ere used.

A constant characteristic time of �c = 10−6 s was used in the
elaxation simulations.

.3. Modelling relaxation modulus

We wanted to use the relaxation data measured at 150 ◦C for
UPAC A as obtained manually from the sources stated by Meissner
30–32]. For this we drew an MWD curve by eye in RheoDevel-
per (RheoPower) to provide a curve close to the original relaxation
odulus curve. The average molecular weight Mw for this LDPE was
easured originally to be 472,000 g/mol, and the polydispersity

ndex, M/Mn, was 24.9. We therefore used Mw = 480, 000 g/mol
nd M/Mn = 25 in our modelling.

The data for LDPE are collected in Fig. 5, which shows the relax-
tion modulus measured by Meissner [30] at 150 ◦C and computed
or IUPAC A. The figure indicates that the five relaxation curves are
ery similar (where the appropriate information is available). The
WD as measured by GPC was drawn using RheoDeveloper, and

he relaxation modulus was computed using both analytical Eq. (9)
nd characteristic Eq. (13) models. The last two curves that used
(t) data were measured by RheoAnalyzer, which developed inter-
ally the MWD or the better RED, and this distribution was used to
odel backward to get wide G(t) fit curve. The wide scales of the

elaxation modulus curve at 150 ◦C computed using the integration
ormula and the MWD are shown in Fig. 6a.

. Conclusions

A new method for modelling linear viscoelasticity and polymer
roperties is presented here, which is mathematically based on the
ontrol theory and on the concept of relations for melts and molec-
lar weight fractions. Here the method has been used to determine
he MWD from viscoelastic data and vice versa, providing a novel
olution to this known ill-posed problem that shows that the MWD
an be obtained directly by derivation. Complete linear viscoelastic
elaxation involves chain dynamics, since the initial Rouse relax-
tion according to the RED gives only a viscous response in the
easurement range, whereas the mainly elastic RED is affected by
Please cite this article in press as: T. Borg, E.J. Pääkkönen, Linear viscoela
Newtonian Fluid Mech. (2008), doi:10.1016/j.jnnfm.2008.07.011

ntanglement relaxation. Since these REDs exhibit only minimal
verlap on the relaxation timescale, it is possible to extract the RED
nd further the MWD by melt calibration. This generates an accu-
ate viscoelastic relaxation modulus, although it is composed from
wo separate viscoelastic REDs.

[

[

 PRESS
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We are currently improving the analytical model, performing
imultaneous parallel computations, and comparing the results
etween analytical and characteristic models. The major known

imitation of our method is that relaxation modulus is difficult to
easure directly, with the use of complex viscosity data in the

rocedure giving a much more accurate MWD and other results.
urther results with a deeper explanation and more polymer types,
nd a description of the numerical methodology of the proce-
ure are available elsewhere by Borg and Pääkkönen [32]. In short,
ur procedure is more understandable from the viewpoint of G(t).
hilst the principle underlying our procedure is simple, the numer-

cally sensitive and labile recursive exponential formulas require
he use of accurate data with specialized software to achieve high
omputing accuracy.
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